SEGH Articles

Untreated Wastewater Irrigation to Vegetable Crops in Pakistan

03 March 2012
Wastewater has been widely used for irrigation of agricultural crops as the nutrients contained in the wastewater are considered beneficial to plant growth



Wastewater has been widely used for irrigation of agricultural crops as the nutrients contained in the wastewater are considered beneficial to plant growth. According to several estimates, about 80 per cent of water used in towns and cities ultimately adopts the form of Sewage Water. The majority of the farmers in the developing world prefer wastewater water irrigation as it is a rich source of nutrients while municipal authorities consider this practice as a viable option for disposal. However, untreated/raw industrial effluent being discharged by factories, which ultimately gets mixed with the urban sewage, may contain excessive amounts of heavy metals/metalloids like cadmium, chromium, nickel, manganese, zinc, lead, etc. These metals/metalloids in soil, if present in excessive quantities to permissible levels, may enter the food chain thus becoming toxic to plants and human beings.

Global overview
At least one-tenth of the world’s population is thought to consume foods produced by irrigation with wastewater. It has been estimated that at least 20 million hectares in 50 countries are irrigated with raw or partially treated wastewater. Wastewater is mainly used in urban agriculture which often supplies a large proportion of the fresh vegetables sold in many cities, particularly in developing countries. In India, irrigation with untreated wastewater equivalent 7.5 cm per hectare has been estimated to supply 36, 5 and 50 kg per hectare of nitrogen (N), phosphorus (P) and potassium (K), respectively. On an average, only about 10% of all wastewater in developing countries receives treatment. WHO/UNICEF has estimated the median percentage of wastewater treated by effective treatment plants to be 35% in Asia, 14% in Latin America and the Caribbean,
90% in North America and 66% in Europe.

Pakistan’s perspective
Poor quality groundwater and lack of alternative water sources have resulted in the use of untreated wastewater for local irrigation in urban, peri-urban and even rural agriculture, all across Pakistan. It has been estimated that in 2025, fifty per cent (100 million) of the population of Pakistan will be residing in cities. The growing population and fresh water scarcity increase the scope of reuse of urban wastewater in agriculture. Total discharge of wastewater for 14 major cities of Pakistan, computed on the basis of 1998 population census, is about 1.83 × 107 m3 h-1 (FAO, 2002). Latest estimates reveal that total quantity of wastewater produced in Pakistan is 962,335 million gallons (4.369 x 109 m3/yr). A recent nationwide wastewater assessment showed that total water supply is 4.6 x 106 m3/day, and about 30% of wastewater is used for irrigating an area of 32,500 hectares (Ensink et al., 2004). It has also been estimated that 64% of total wastewater of Pakistan is disposed of either into rivers or into the Arabian Sea. Similarly 400,000 m3/ day wastewater is additionally added to canals. Therefore, it is essential to look into prospects of sewage irrigation to manage this nutrient rich water resource. Farmers are getting good crop yields from sewage irrigated crops without application of chemical fertilizers as compared to those grown with freshwater. The yield differences are attributed to the nutrients in wastewater, but it is not often known which nutrients are most valuable and what their optimum quantities are. In general, the value of wastewater as a source of nutrients for crops depends on concentrations of nutrients, type of crop grown, and soil fertility level. In case of wastewater, nutrient use efficiency is almost 100% as the nutrients remain dissolved in wastewater/ soil solution and thus more available to the crops. This is also because, nutrient supply through irrigation water matches with crop nutrient demand and given in increments with each irrigation as compared to chemical fertilizers which are commonly applied in two to three splits.

The quantity of N, P and K applied from sewage irrigations of 0.40 m in Faisalabad (Pakistan) ranged from 116 to 195, 7 to 21 and 108 to 249 kg ha-1, respectively. These quantities of N and K are quite sufficient for any crop while that of P is low and would need to be supplemented. Since P applied through sewage is 100% soluble, its availability is generally much higher than P applied through fertilizers. In another study conducted at Haroonabad (Pakistan), up to 2030, 1110 and 1580 kg ha-1 of N, P and K, respectively, per cropping season were added to the soils when crops were irrigated with sewage (Ensink et al., 2002). Efficiencies of nutrients (excess of nutrient above the recommended rate) applied through sewage irrigation ranged from 140 to 920 for N, 20 to 790 for P and 125 to 930% for K, depending upon the crop type and amount of sewage.

In most of the industrial cities of Pakistan, domestic sewage is mixed with industrial effluents, which contains very high concentrations of toxic metals. Therefore, domestic sewage and industrial wastes should be treated separately and different set of guidelines should be developed for their use in agriculture. Moreover, the farmers using sewage for irrigation should regularly monitor the concentration of heavy metals and pathogens in sewage being used for irrigation. In this country it is common practice to apply raw municipal sewage/industrial effluent to grow vegetables especially, in the vicinity of big cities. As a result of human intake of sewage irrigated vegetables, there is a risk of various diseases in the long run as a result of slow build up of metals in several organs of the body.

Treatment cost of polluted wastewater
Assuming that all the installed treatment plants are working at their full installed capacity, it is estimated that about 8% of urban wastewater is probably treated through sedimentation pounds to a primary level only. There is no prevailing concept of treatment at secondary and tertiary level in this country. Based on careful estimates, to make raw effluent, germ free as per standards set by WHO for a city with a population of 1 million, it will cost Pak Rs. 750 million (90 Pak Rs = $1) annually. However, to bring the same raw effluent up to standards set by United States Environmental Protection Agency (USEPA) this cost will exceed its double. Only for disinfection of 100 cubic meter raw sewage the cost is about Pak. Rs. 700. The use of major portion of sewage for irrigation without prior treatment, especially in developing world, is largely blamed to lack of funds and latest technology.

Economics of untreated wastewater use
Currently, 1/4th of vegetables being grown in Pakistan are irrigated with untreated sewage water. According to a study conducted by the International Water Management Institute, Pakistan Chapter, farmers practicing sewage irrigation get about Rs. 3000 per acre more income than that from fresh irrigated water fields. This figure is quite close to the estimated gross value (Pak Rs. 3278 per acre per annum) of the nutrient load of wastewater assessed during a study in Mexico by the same Institute. Moreover, the net value of produce from wastewater irrigated fields is calculated to be about Pak Rs. 20,000 per acre. This is attributed to essential nutrients present in sewage water, thus eliminating the need for chemical fertilizers.

Recommended Strategies
Treatment of sewage should be made mandatory prior to its use in agriculture. Under unavoidable circumstances, wastewater should be diluted with freshwater. But still, it should be got tested from some nearby soil/water/food testing laboratory, especially for its heavy metal contents.

To avoid metal entry in to food chain, untreated waste water should preferably be used to irrigate non-vegetable crops such as cotton, ornamental plants, green belts, urban forest plantations, etc. However, a gap of 1-2 years should be given after every 3-4 years of sewage application to allow the soil to come back to the equilibrium.

Untreated wastewater irrigation should be avoided to vegetable crops especially leafy vegetables (spinach, coriander, fenugreek, lettuce, etc.) as well as those ones which are consumed raw/uncooked as a salad like cucumber, tomato, carrot, radish etc. Only those vegetable crops should be irrigated that bear above-ground edible parts and are cooked before consumption.

The review work summarized has been published and can be accessed from the following links:

For further details, please contact Dr M. H. Zia, E-Mail:


Ensink, J.H.J, T. Mahmood, W.van der Hoek, L. Raschid-Sally and F.P. Amerasinghe. 2004. A nationwide assessment of wastewater use in Pakistan: an obscure activity or a vitally important one? Water Policy 6: 197-206.

Ensink, J.H.J., W. van der Hoek, Y. Matsuno, S. Munir, M.R. Aslam. 2002. Use of untreated wastewater in peri-urban agriculture in Pakistan: Risks and opportunities. IWMI Research Report No. 64. International Water Management Institute (IWMI), Colombo, Sri Lanka.

Food and Agriculture Organization of the United Nations (FAO). 2002. Investment in Land and Water. In Proceedings of the regional consultation Bangkok, Thailand 3-5 October, 2001. Publication 2002/09. FAO Regional Office for Asia and the Pacific, Bangkok.

Hussain, S.I. (2000). Irrigation of crops with sewage effluent. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan.

Murtaza, G., A. Ghafoor, M. Qadir, G. Owens, M.A. Aziz, M.H. Zia and Saifullah. Disposal and Use of Sewage on Agricultural Lands in Pakistan: A Review. Pedosphere 20:23-34.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fertilizer usage and cadmium in soils, crops and food 2018-06-23


    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\) , \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  • Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments 2018-06-23


    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  • Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons 2018-06-22


    Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.