SEGH Articles

Urban sediments: Geochemistry and mineralogy towards improved risk assessments

07 November 2012
Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Raquel Cardoso is currently a final year PhD student at Manchester Metropolitan University, UK in collaboration with the British Geological Survey, studying urban environmental geochemistry. Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Road deposited sediments (RDS), the accumulation of particles on pavements and road surfaces, have been documented to carry a high loading of contaminant species, including trace metals. These potentially harmful elements (PHE) may cause deleterious health effects to urban residents and commuters due to RDS high susceptibility to remobilisation and transport - RDS is spatially and temporally highly variable. Furthermore, urban agglomerations tend to grow and so does the importance of RDS characterization and monitoring: 50% of the world population currently lives in urban centres, a figure which is set to increase in the next decades.

With the purpose of better understanding RDS compositional variations across Manchester, UK, and its relationship to soil geochemistry, 144 RDS samples were collected in two seasons  across 75Km2 of Manchester urban centre. Samples underwent elemental analysis by X-ray fluorescence spectrometry (XRF), organic matter determination, grain size analysis by laser diffractrometry, and grain-specific microanalysis by scanning electron microscopy (SEM-EDS).

The amount of RDS collected in summer was generally larger than in winter and grain size was also coarser in summer for most samples. Nevertheless, PHE content remained similar between seasons for each location. GIS (geographic information system) spatial interpolation analysis  allowed the detection of contamination hotspots present in both winter and summer datasets, where PHE concentrations (namely Cr, Ni, Cu, Zn, Pb and Cd) were above the 90th percentile. Further GIS data analysis pointed proximity to main roads and industrial areas as the main influential factors on RDS composition, which can vary considerably over short distances.

Grain size analysis evidenced that among the most contaminated samples are those with highest contents in grain size fractions below 63µm. However, correlation and principal component analysis showed that PHE tend to be associated to the 63-125µm, suggesting that these might act as hosts for PHE rather than the finest fractions of the sediment (<63µm). Elements correlated to the 63-125µm fraction include Zn, Pb and Cd for both seasons, as well as Co, Ba, Ni and Cu only for the summer dataset. Further SEM-EDS analysis revealed grains between ~90-130µm composed by combinations of the above elements, either in crystalline forms or aggregates. The source of these grains still needs further investigation.

Future sequential extraction analysis of trace metals will clarify the availability of these PHE, providing essential information for the risk assessment to human populations. With the aid of geostatistical models, PHE associations will be defined, as well as the spatial, geochemical and mineralogical linkages between RDS and other environmental media, namely soils - for which similar research is being undertaken presently. This will lead to a better understanding of PHE dynamics in urban systems and add vital knowledge on the risks posed to human populations by RDS exposure.

Raquel Cardoso

Manchester Metropolitan University

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01

    Abstract

    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01

    Abstract

    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.