SEGH Articles

Urban sediments: Geochemistry and mineralogy towards improved risk assessments

07 November 2012
Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Raquel Cardoso is currently a final year PhD student at Manchester Metropolitan University, UK in collaboration with the British Geological Survey, studying urban environmental geochemistry. Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Road deposited sediments (RDS), the accumulation of particles on pavements and road surfaces, have been documented to carry a high loading of contaminant species, including trace metals. These potentially harmful elements (PHE) may cause deleterious health effects to urban residents and commuters due to RDS high susceptibility to remobilisation and transport - RDS is spatially and temporally highly variable. Furthermore, urban agglomerations tend to grow and so does the importance of RDS characterization and monitoring: 50% of the world population currently lives in urban centres, a figure which is set to increase in the next decades.

With the purpose of better understanding RDS compositional variations across Manchester, UK, and its relationship to soil geochemistry, 144 RDS samples were collected in two seasons  across 75Km2 of Manchester urban centre. Samples underwent elemental analysis by X-ray fluorescence spectrometry (XRF), organic matter determination, grain size analysis by laser diffractrometry, and grain-specific microanalysis by scanning electron microscopy (SEM-EDS).

The amount of RDS collected in summer was generally larger than in winter and grain size was also coarser in summer for most samples. Nevertheless, PHE content remained similar between seasons for each location. GIS (geographic information system) spatial interpolation analysis  allowed the detection of contamination hotspots present in both winter and summer datasets, where PHE concentrations (namely Cr, Ni, Cu, Zn, Pb and Cd) were above the 90th percentile. Further GIS data analysis pointed proximity to main roads and industrial areas as the main influential factors on RDS composition, which can vary considerably over short distances.

Grain size analysis evidenced that among the most contaminated samples are those with highest contents in grain size fractions below 63µm. However, correlation and principal component analysis showed that PHE tend to be associated to the 63-125µm, suggesting that these might act as hosts for PHE rather than the finest fractions of the sediment (<63µm). Elements correlated to the 63-125µm fraction include Zn, Pb and Cd for both seasons, as well as Co, Ba, Ni and Cu only for the summer dataset. Further SEM-EDS analysis revealed grains between ~90-130µm composed by combinations of the above elements, either in crystalline forms or aggregates. The source of these grains still needs further investigation.

Future sequential extraction analysis of trace metals will clarify the availability of these PHE, providing essential information for the risk assessment to human populations. With the aid of geostatistical models, PHE associations will be defined, as well as the spatial, geochemical and mineralogical linkages between RDS and other environmental media, namely soils - for which similar research is being undertaken presently. This will lead to a better understanding of PHE dynamics in urban systems and add vital knowledge on the risks posed to human populations by RDS exposure.

Raquel Cardoso

Manchester Metropolitan University

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.