SEGH Articles

Urban sediments: Geochemistry and mineralogy towards improved risk assessments

07 November 2012
Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Raquel Cardoso is currently a final year PhD student at Manchester Metropolitan University, UK in collaboration with the British Geological Survey, studying urban environmental geochemistry. Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Road deposited sediments (RDS), the accumulation of particles on pavements and road surfaces, have been documented to carry a high loading of contaminant species, including trace metals. These potentially harmful elements (PHE) may cause deleterious health effects to urban residents and commuters due to RDS high susceptibility to remobilisation and transport - RDS is spatially and temporally highly variable. Furthermore, urban agglomerations tend to grow and so does the importance of RDS characterization and monitoring: 50% of the world population currently lives in urban centres, a figure which is set to increase in the next decades.

With the purpose of better understanding RDS compositional variations across Manchester, UK, and its relationship to soil geochemistry, 144 RDS samples were collected in two seasons  across 75Km2 of Manchester urban centre. Samples underwent elemental analysis by X-ray fluorescence spectrometry (XRF), organic matter determination, grain size analysis by laser diffractrometry, and grain-specific microanalysis by scanning electron microscopy (SEM-EDS).

The amount of RDS collected in summer was generally larger than in winter and grain size was also coarser in summer for most samples. Nevertheless, PHE content remained similar between seasons for each location. GIS (geographic information system) spatial interpolation analysis  allowed the detection of contamination hotspots present in both winter and summer datasets, where PHE concentrations (namely Cr, Ni, Cu, Zn, Pb and Cd) were above the 90th percentile. Further GIS data analysis pointed proximity to main roads and industrial areas as the main influential factors on RDS composition, which can vary considerably over short distances.

Grain size analysis evidenced that among the most contaminated samples are those with highest contents in grain size fractions below 63µm. However, correlation and principal component analysis showed that PHE tend to be associated to the 63-125µm, suggesting that these might act as hosts for PHE rather than the finest fractions of the sediment (<63µm). Elements correlated to the 63-125µm fraction include Zn, Pb and Cd for both seasons, as well as Co, Ba, Ni and Cu only for the summer dataset. Further SEM-EDS analysis revealed grains between ~90-130µm composed by combinations of the above elements, either in crystalline forms or aggregates. The source of these grains still needs further investigation.

Future sequential extraction analysis of trace metals will clarify the availability of these PHE, providing essential information for the risk assessment to human populations. With the aid of geostatistical models, PHE associations will be defined, as well as the spatial, geochemical and mineralogical linkages between RDS and other environmental media, namely soils - for which similar research is being undertaken presently. This will lead to a better understanding of PHE dynamics in urban systems and add vital knowledge on the risks posed to human populations by RDS exposure.

Raquel Cardoso

Manchester Metropolitan University

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.