SEGH Articles

Urban sediments: Geochemistry and mineralogy towards improved risk assessments

07 November 2012
Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Raquel Cardoso is currently a final year PhD student at Manchester Metropolitan University, UK in collaboration with the British Geological Survey, studying urban environmental geochemistry. Raquel was a joint oral presentation winner at the ISEG meeting in Aveiro in July 2012. The main aim of Raquel’s present research is to characterize the presence of PHE in soils and urban sediments, exploring the spatial, geochemical and mineralogical linkages within and between these media.

Road deposited sediments (RDS), the accumulation of particles on pavements and road surfaces, have been documented to carry a high loading of contaminant species, including trace metals. These potentially harmful elements (PHE) may cause deleterious health effects to urban residents and commuters due to RDS high susceptibility to remobilisation and transport - RDS is spatially and temporally highly variable. Furthermore, urban agglomerations tend to grow and so does the importance of RDS characterization and monitoring: 50% of the world population currently lives in urban centres, a figure which is set to increase in the next decades.

With the purpose of better understanding RDS compositional variations across Manchester, UK, and its relationship to soil geochemistry, 144 RDS samples were collected in two seasons  across 75Km2 of Manchester urban centre. Samples underwent elemental analysis by X-ray fluorescence spectrometry (XRF), organic matter determination, grain size analysis by laser diffractrometry, and grain-specific microanalysis by scanning electron microscopy (SEM-EDS).

The amount of RDS collected in summer was generally larger than in winter and grain size was also coarser in summer for most samples. Nevertheless, PHE content remained similar between seasons for each location. GIS (geographic information system) spatial interpolation analysis  allowed the detection of contamination hotspots present in both winter and summer datasets, where PHE concentrations (namely Cr, Ni, Cu, Zn, Pb and Cd) were above the 90th percentile. Further GIS data analysis pointed proximity to main roads and industrial areas as the main influential factors on RDS composition, which can vary considerably over short distances.

Grain size analysis evidenced that among the most contaminated samples are those with highest contents in grain size fractions below 63µm. However, correlation and principal component analysis showed that PHE tend to be associated to the 63-125µm, suggesting that these might act as hosts for PHE rather than the finest fractions of the sediment (<63µm). Elements correlated to the 63-125µm fraction include Zn, Pb and Cd for both seasons, as well as Co, Ba, Ni and Cu only for the summer dataset. Further SEM-EDS analysis revealed grains between ~90-130µm composed by combinations of the above elements, either in crystalline forms or aggregates. The source of these grains still needs further investigation.

Future sequential extraction analysis of trace metals will clarify the availability of these PHE, providing essential information for the risk assessment to human populations. With the aid of geostatistical models, PHE associations will be defined, as well as the spatial, geochemical and mineralogical linkages between RDS and other environmental media, namely soils - for which similar research is being undertaken presently. This will lead to a better understanding of PHE dynamics in urban systems and add vital knowledge on the risks posed to human populations by RDS exposure.

Raquel Cardoso

Manchester Metropolitan University

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.