SEGH Articles

Urban soil of Athens, Greece: Local geology beats human pollution on trace elements

04 June 2014
Bearing in mind the historical absence of heavy industry within the Greater Athens and Piraeus area, the tested hypotheses was that local geology is important in controlling the distribution of potentially harmful trace elements in urban soil.


Bearing in mind the historical absence of heavy industry within the Greater Athens and Piraeus area, the tested hypotheses was that local geology is important in controlling the distribution of potentially harmful trace elements in urban soil.

 

The first geochemical baseline study of surface soil in Athens, based on a systematic sampling survey covering the Greater Athens and Piraeus area, was recently performed by the Laboratory of Economic Geology and Geochemistry, University of Athens. In the study, the contents of the major elements Fe, Al, K and Ca, and potentially harmful elements Ni, Cr, Co, Mn, As, Pb, Zn, Cu, Cd, Sb and Sn were determined.

Athens, Greece is a European city with a very long history. The area has been continuously inhabited for more than 7,000 years and provides an example of early urbanization in the ancient world. However, unlike most European capitals, the urbanization of modern Athens was not related to the Industrial Revolution. The city experienced rapid population growth from ~400,000 people in 1925 to > 1,000,000 by 1950.  The population increase of modern Athens is marked by the return of Greek refugees from Asia Minor in the 1920s after World War I, and extensive internal migration after World War II. Today, the urban area of Greater Athens and Piraeus has a population of ~ 3.2 million over an area of 412 km2. This constitutes ~ 1/3rd of the Greek population. In addition, this area is the center of economic and commercial activities for the country.

Principle Component Analysis and Cluster Analysis, combined with analysis of soil heterogeneity and spatial variability, were implemented in order to distinguish the sources of elements and their classification as geogenic or anthropogenic. It was found that the major factor controlling variability of the chemical composition of surface soil was the bedrock chemistry, resulting in a significant enrichment in concentrations of Ni, Cr, Co and possibly As. Greek soil is naturally enriched in Cr, Ni, Co and Mn as a result of the widespread occurrence of basic and ultrabasic rocks. Furthermore, elevated As concentrations in soil and natural waters have been linked to metamorphic rocks in Greece.

Anthropogenic influences were also significant, controlling a spectrum of elements that are typical of human activities, i.e. Pb, Zn, Cu, Cd, Sb, and Sn. The highest concentrations of the classical urban contaminants were observed in the surface soil from roadside verges and in the older parts of the city, as well as the densely populated areas. Spatial distribution patterns of PHEs demonstrated an increase in concentrations of the anthropogenically induced metals towards the city core and the port of Piraeus. On the contrary, the naturally derived Ni, Cr and Co are mainly enriched in the periphery of Athens Basin.

 

Taking into account the salient enrichment of geogenic PHEs in Athens soil, comparing with concentrations measured in other cities around the world, this study provides base for further research into PHE mobility and bioaccessibility. This work is also important for under the current economic conditions the development of urban agriculture is an emerging initiative of several municipalities. The results of the study are presented in a publication in the Science of the Total Environment: http://dx.doi.org/10.1016/j.scitotenv.2014.02.133

 

Dr. Ariadne Argyraki, Assistant Professor in Geochemistry, University of Athens (argyraki@geol.uoa.gr)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.