SEGH Articles

Urban soil of Athens, Greece: Local geology beats human pollution on trace elements

04 June 2014
Bearing in mind the historical absence of heavy industry within the Greater Athens and Piraeus area, the tested hypotheses was that local geology is important in controlling the distribution of potentially harmful trace elements in urban soil.

Bearing in mind the historical absence of heavy industry within the Greater Athens and Piraeus area, the tested hypotheses was that local geology is important in controlling the distribution of potentially harmful trace elements in urban soil.


The first geochemical baseline study of surface soil in Athens, based on a systematic sampling survey covering the Greater Athens and Piraeus area, was recently performed by the Laboratory of Economic Geology and Geochemistry, University of Athens. In the study, the contents of the major elements Fe, Al, K and Ca, and potentially harmful elements Ni, Cr, Co, Mn, As, Pb, Zn, Cu, Cd, Sb and Sn were determined.

Athens, Greece is a European city with a very long history. The area has been continuously inhabited for more than 7,000 years and provides an example of early urbanization in the ancient world. However, unlike most European capitals, the urbanization of modern Athens was not related to the Industrial Revolution. The city experienced rapid population growth from ~400,000 people in 1925 to > 1,000,000 by 1950.  The population increase of modern Athens is marked by the return of Greek refugees from Asia Minor in the 1920s after World War I, and extensive internal migration after World War II. Today, the urban area of Greater Athens and Piraeus has a population of ~ 3.2 million over an area of 412 km2. This constitutes ~ 1/3rd of the Greek population. In addition, this area is the center of economic and commercial activities for the country.

Principle Component Analysis and Cluster Analysis, combined with analysis of soil heterogeneity and spatial variability, were implemented in order to distinguish the sources of elements and their classification as geogenic or anthropogenic. It was found that the major factor controlling variability of the chemical composition of surface soil was the bedrock chemistry, resulting in a significant enrichment in concentrations of Ni, Cr, Co and possibly As. Greek soil is naturally enriched in Cr, Ni, Co and Mn as a result of the widespread occurrence of basic and ultrabasic rocks. Furthermore, elevated As concentrations in soil and natural waters have been linked to metamorphic rocks in Greece.

Anthropogenic influences were also significant, controlling a spectrum of elements that are typical of human activities, i.e. Pb, Zn, Cu, Cd, Sb, and Sn. The highest concentrations of the classical urban contaminants were observed in the surface soil from roadside verges and in the older parts of the city, as well as the densely populated areas. Spatial distribution patterns of PHEs demonstrated an increase in concentrations of the anthropogenically induced metals towards the city core and the port of Piraeus. On the contrary, the naturally derived Ni, Cr and Co are mainly enriched in the periphery of Athens Basin.


Taking into account the salient enrichment of geogenic PHEs in Athens soil, comparing with concentrations measured in other cities around the world, this study provides base for further research into PHE mobility and bioaccessibility. This work is also important for under the current economic conditions the development of urban agriculture is an emerging initiative of several municipalities. The results of the study are presented in a publication in the Science of the Total Environment:


Dr. Ariadne Argyraki, Assistant Professor in Geochemistry, University of Athens (

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01


    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01


    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01


    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.