SEGH Articles

Urban soil of Athens, Greece: Local geology beats human pollution on trace elements

04 June 2014
Bearing in mind the historical absence of heavy industry within the Greater Athens and Piraeus area, the tested hypotheses was that local geology is important in controlling the distribution of potentially harmful trace elements in urban soil.


Bearing in mind the historical absence of heavy industry within the Greater Athens and Piraeus area, the tested hypotheses was that local geology is important in controlling the distribution of potentially harmful trace elements in urban soil.

 

The first geochemical baseline study of surface soil in Athens, based on a systematic sampling survey covering the Greater Athens and Piraeus area, was recently performed by the Laboratory of Economic Geology and Geochemistry, University of Athens. In the study, the contents of the major elements Fe, Al, K and Ca, and potentially harmful elements Ni, Cr, Co, Mn, As, Pb, Zn, Cu, Cd, Sb and Sn were determined.

Athens, Greece is a European city with a very long history. The area has been continuously inhabited for more than 7,000 years and provides an example of early urbanization in the ancient world. However, unlike most European capitals, the urbanization of modern Athens was not related to the Industrial Revolution. The city experienced rapid population growth from ~400,000 people in 1925 to > 1,000,000 by 1950.  The population increase of modern Athens is marked by the return of Greek refugees from Asia Minor in the 1920s after World War I, and extensive internal migration after World War II. Today, the urban area of Greater Athens and Piraeus has a population of ~ 3.2 million over an area of 412 km2. This constitutes ~ 1/3rd of the Greek population. In addition, this area is the center of economic and commercial activities for the country.

Principle Component Analysis and Cluster Analysis, combined with analysis of soil heterogeneity and spatial variability, were implemented in order to distinguish the sources of elements and their classification as geogenic or anthropogenic. It was found that the major factor controlling variability of the chemical composition of surface soil was the bedrock chemistry, resulting in a significant enrichment in concentrations of Ni, Cr, Co and possibly As. Greek soil is naturally enriched in Cr, Ni, Co and Mn as a result of the widespread occurrence of basic and ultrabasic rocks. Furthermore, elevated As concentrations in soil and natural waters have been linked to metamorphic rocks in Greece.

Anthropogenic influences were also significant, controlling a spectrum of elements that are typical of human activities, i.e. Pb, Zn, Cu, Cd, Sb, and Sn. The highest concentrations of the classical urban contaminants were observed in the surface soil from roadside verges and in the older parts of the city, as well as the densely populated areas. Spatial distribution patterns of PHEs demonstrated an increase in concentrations of the anthropogenically induced metals towards the city core and the port of Piraeus. On the contrary, the naturally derived Ni, Cr and Co are mainly enriched in the periphery of Athens Basin.

 

Taking into account the salient enrichment of geogenic PHEs in Athens soil, comparing with concentrations measured in other cities around the world, this study provides base for further research into PHE mobility and bioaccessibility. This work is also important for under the current economic conditions the development of urban agriculture is an emerging initiative of several municipalities. The results of the study are presented in a publication in the Science of the Total Environment: http://dx.doi.org/10.1016/j.scitotenv.2014.02.133

 

Dr. Ariadne Argyraki, Assistant Professor in Geochemistry, University of Athens (argyraki@geol.uoa.gr)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.