SEGH Articles

Waste glass as a substrate for As removal from drinking waters in Bangladesh: a laboratory and field-based study

03 December 2011
This research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale.

My name is Sultana Kudrati Khoda. I am from Bangladesh, studying for a PhD at the University of Brighton under the supervision of Professor Marie Harder and Professor Andy Cundy.  My research work is based on the "Arsenic removal from ground water using recycled glass granules and waste stainless steel fragments as a filter media. The experiments were performed in the laboratory of Brighton University and in Bangladesh with the technical support from Department of Soil, Water and Environment, University of Dhaka.

The study involves the shaking of glass granules and stainless steel fragments with synthetic arsenic solutions, filtration of synthetic arsenic solutions and natural arsenic contaminated water using both media and characterization of both media using SEM, XRD, PXRF and sequential extraction.

A number of low-cost natural and synthetic filtration media have been proposed for the removal of arsenic (As) from drinking water in areas such as Bangladesh, where exposure to environmental As is a major human health issue. This PhD research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale. To assess the performance of recycled glass media as a practical filter bed, glass granules were differentiated by colour, size and mode of preparation (imploded and ground) and used as media for batch adsorption and column filtration experiments. As removal capacity was assessed using a prepared As (III) test solution.

Field experiments were also performed in Bangladesh using larger column filters (750ml volume) and local As-contaminated groundwater. Filter media made from recycled glass and waste stainless steel fragments (introduced during the recycling and preparation process of glass) were also characterised via SEM, XRD, PXRF, and sequential extraction experiments were performed on used filtration media to assess As removal and adsorption processes.

Results indicate that glass granules can remove As from drinking water at an efficiency suitable for household application. Arsenic removal efficiency depends on the presence of other ions such as Fe, Mn, P etc. in the treated water. The presence of waste stainless steel fragments in the filtration medium significantly improved adsorption capacity. The glass particle size and mode of size reduction was also found to influence the removal of As: smaller ground glass was better than imploded glass of the same size. The results, coupled with the low cost of waste glass, indicates that the glass should be investigated further for use in domestic water filtration for As.

Sultana Kudrati Khoda1, Andrew Cundy1, Marie Harder1, Imamul Huq2

Contact: sultanakhoda@yahoo.co.uk

1 Faculty of Science and Engineering, University of Brighton, Brighton, BN2 4GJ, UK.

2 Department of Soil, Water and Environment, University of Dhaka, Bangladesh.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.