SEGH Articles

Waste glass as a substrate for As removal from drinking waters in Bangladesh: a laboratory and field-based study

03 December 2011
This research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale.

My name is Sultana Kudrati Khoda. I am from Bangladesh, studying for a PhD at the University of Brighton under the supervision of Professor Marie Harder and Professor Andy Cundy.  My research work is based on the "Arsenic removal from ground water using recycled glass granules and waste stainless steel fragments as a filter media. The experiments were performed in the laboratory of Brighton University and in Bangladesh with the technical support from Department of Soil, Water and Environment, University of Dhaka.

The study involves the shaking of glass granules and stainless steel fragments with synthetic arsenic solutions, filtration of synthetic arsenic solutions and natural arsenic contaminated water using both media and characterization of both media using SEM, XRD, PXRF and sequential extraction.

A number of low-cost natural and synthetic filtration media have been proposed for the removal of arsenic (As) from drinking water in areas such as Bangladesh, where exposure to environmental As is a major human health issue. This PhD research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale. To assess the performance of recycled glass media as a practical filter bed, glass granules were differentiated by colour, size and mode of preparation (imploded and ground) and used as media for batch adsorption and column filtration experiments. As removal capacity was assessed using a prepared As (III) test solution.

Field experiments were also performed in Bangladesh using larger column filters (750ml volume) and local As-contaminated groundwater. Filter media made from recycled glass and waste stainless steel fragments (introduced during the recycling and preparation process of glass) were also characterised via SEM, XRD, PXRF, and sequential extraction experiments were performed on used filtration media to assess As removal and adsorption processes.

Results indicate that glass granules can remove As from drinking water at an efficiency suitable for household application. Arsenic removal efficiency depends on the presence of other ions such as Fe, Mn, P etc. in the treated water. The presence of waste stainless steel fragments in the filtration medium significantly improved adsorption capacity. The glass particle size and mode of size reduction was also found to influence the removal of As: smaller ground glass was better than imploded glass of the same size. The results, coupled with the low cost of waste glass, indicates that the glass should be investigated further for use in domestic water filtration for As.

Sultana Kudrati Khoda1, Andrew Cundy1, Marie Harder1, Imamul Huq2


1 Faculty of Science and Engineering, University of Brighton, Brighton, BN2 4GJ, UK.

2 Department of Soil, Water and Environment, University of Dhaka, Bangladesh.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19


    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18


    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.