SEGH Articles

Waste glass as a substrate for As removal from drinking waters in Bangladesh: a laboratory and field-based study

03 December 2011
This research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale.

My name is Sultana Kudrati Khoda. I am from Bangladesh, studying for a PhD at the University of Brighton under the supervision of Professor Marie Harder and Professor Andy Cundy.  My research work is based on the "Arsenic removal from ground water using recycled glass granules and waste stainless steel fragments as a filter media. The experiments were performed in the laboratory of Brighton University and in Bangladesh with the technical support from Department of Soil, Water and Environment, University of Dhaka.

The study involves the shaking of glass granules and stainless steel fragments with synthetic arsenic solutions, filtration of synthetic arsenic solutions and natural arsenic contaminated water using both media and characterization of both media using SEM, XRD, PXRF and sequential extraction.

A number of low-cost natural and synthetic filtration media have been proposed for the removal of arsenic (As) from drinking water in areas such as Bangladesh, where exposure to environmental As is a major human health issue. This PhD research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale. To assess the performance of recycled glass media as a practical filter bed, glass granules were differentiated by colour, size and mode of preparation (imploded and ground) and used as media for batch adsorption and column filtration experiments. As removal capacity was assessed using a prepared As (III) test solution.

Field experiments were also performed in Bangladesh using larger column filters (750ml volume) and local As-contaminated groundwater. Filter media made from recycled glass and waste stainless steel fragments (introduced during the recycling and preparation process of glass) were also characterised via SEM, XRD, PXRF, and sequential extraction experiments were performed on used filtration media to assess As removal and adsorption processes.

Results indicate that glass granules can remove As from drinking water at an efficiency suitable for household application. Arsenic removal efficiency depends on the presence of other ions such as Fe, Mn, P etc. in the treated water. The presence of waste stainless steel fragments in the filtration medium significantly improved adsorption capacity. The glass particle size and mode of size reduction was also found to influence the removal of As: smaller ground glass was better than imploded glass of the same size. The results, coupled with the low cost of waste glass, indicates that the glass should be investigated further for use in domestic water filtration for As.

Sultana Kudrati Khoda1, Andrew Cundy1, Marie Harder1, Imamul Huq2

Contact: sultanakhoda@yahoo.co.uk

1 Faculty of Science and Engineering, University of Brighton, Brighton, BN2 4GJ, UK.

2 Department of Soil, Water and Environment, University of Dhaka, Bangladesh.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.