SEGH Articles

Waste glass as a substrate for As removal from drinking waters in Bangladesh: a laboratory and field-based study

03 December 2011
This research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale.

My name is Sultana Kudrati Khoda. I am from Bangladesh, studying for a PhD at the University of Brighton under the supervision of Professor Marie Harder and Professor Andy Cundy.  My research work is based on the "Arsenic removal from ground water using recycled glass granules and waste stainless steel fragments as a filter media. The experiments were performed in the laboratory of Brighton University and in Bangladesh with the technical support from Department of Soil, Water and Environment, University of Dhaka.

The study involves the shaking of glass granules and stainless steel fragments with synthetic arsenic solutions, filtration of synthetic arsenic solutions and natural arsenic contaminated water using both media and characterization of both media using SEM, XRD, PXRF and sequential extraction.

A number of low-cost natural and synthetic filtration media have been proposed for the removal of arsenic (As) from drinking water in areas such as Bangladesh, where exposure to environmental As is a major human health issue. This PhD research project examines the application of recycled glass and waste stainless steel fragments as a practical medium for As removal at a household scale. To assess the performance of recycled glass media as a practical filter bed, glass granules were differentiated by colour, size and mode of preparation (imploded and ground) and used as media for batch adsorption and column filtration experiments. As removal capacity was assessed using a prepared As (III) test solution.

Field experiments were also performed in Bangladesh using larger column filters (750ml volume) and local As-contaminated groundwater. Filter media made from recycled glass and waste stainless steel fragments (introduced during the recycling and preparation process of glass) were also characterised via SEM, XRD, PXRF, and sequential extraction experiments were performed on used filtration media to assess As removal and adsorption processes.

Results indicate that glass granules can remove As from drinking water at an efficiency suitable for household application. Arsenic removal efficiency depends on the presence of other ions such as Fe, Mn, P etc. in the treated water. The presence of waste stainless steel fragments in the filtration medium significantly improved adsorption capacity. The glass particle size and mode of size reduction was also found to influence the removal of As: smaller ground glass was better than imploded glass of the same size. The results, coupled with the low cost of waste glass, indicates that the glass should be investigated further for use in domestic water filtration for As.

Sultana Kudrati Khoda1, Andrew Cundy1, Marie Harder1, Imamul Huq2

Contact: sultanakhoda@yahoo.co.uk

1 Faculty of Science and Engineering, University of Brighton, Brighton, BN2 4GJ, UK.

2 Department of Soil, Water and Environment, University of Dhaka, Bangladesh.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.