SEGH Articles

A model for Quality Assurance, Lab Management and Good Laboratory Practices for Africa

06 October 2017
David and Takesure describe their efforts to improve quality assurance in the environmental chemistry labs in Kenya and Zimbabwe

 

My Name is David Samoei from the University of Eldoret (UoE) in Kenya. I work as a Senior Technician in the School of Environmental Studies, Department of Environmental Biology and Health. I assist in the project that explores links between soil geochemistry and the spatial incidence of oesophageal cancer in Kenya (http://britgeopeople.blogspot.co.uk/2016/03/geochemistry-and-health-in-kenyan-rift.html). I undertook a Commonwealth Professional Fellowship (CSCUK) 2017 alongside a colleague, Takesure Tendayi who is also a Chief laboratory technician from the University of Zimbabwe School of Agriculture and Soil Sciences. This training took place with the Inorganic Geochemistry team at the British Geological Survey (BGS) in Nottingham.

Our training exposed us to the use of state of art laboratory equipment i.e. ICP-MS, IC and NPOC. Due to the sensitivity of these equipment, I have an improved understanding of the importance of proper sample collection, sample handling, preparation of bulk reference materials and their need for Good Laboratory Practices that require clean environments, good protocols for sample and data traceability.

As a result, we were exposed to Quality Control (QC), Data Management and Interpretative Skills with the use of simple excel spread sheet tools incorporating formulas to manage simple statistics, QC performance charts for laboratory equipment, handling of data outputs through to the client/end-user, importance of using certified reference materials and many more controls.  All of which provide confidence in data issued from a laboratory for use in a regulatory, industry or peer review environment. We were introduced to the concept of Quality Assurance (QA), which is comprehensively wrapped up in ISO 17025. Whilst not every laboratory requires ISO accreditation, the maintenance of a quality management system is crucial to a laboratory, again for confidence in data outputs.  The overview of principles of QA, which includes documentation, Standard Operating Procedures (SOP's), Quality Control samples and monitoring processes will help us develop our own systems in Africa and understand the challenges to implement them and possibly even aim for appropriate accreditation. Our collaboration with the BGS laboratories will act as a bench mark to this monumental task. This can be achieved in a stepwise and staggered manner. Accreditation is possible for African laboratories.

Health and Safety, Waste Management is an integral part in all the processes and systems in laboratories in general, to safeguard staff safety, comply with legal and regulatory frameworks, ensure control of chemicals, hazardous equipment or procedures to minimise risk where possible. The safety designs, training instruction, and personal protective equipment (PPE) made a good impact on me, being asthmatic I (David) was able to work in soil sample preparation laboratories without any complication, an area which could otherwise be dirty and dusty without extensive controls in place to protect staff and minimise sample contamination. This knowledge will be used to introduce simple steps to gradually improve awareness of health and safety, and waste management in our laboratories back in Africa.

We experienced field collections visiting Colchester Zoo for Fiona Sach’s PhD project (http://britgeopeople.blogspot.co.uk/2016/09/zoo-elephants-help-their-wild.html), introducing QA from collection through to reporting. We explored more the UK during our training, which coincided with four bank holidays; these gave us opportunities to tour and interact with the wider British National Cultural Heritage. These moments were good refreshing breaks from the intensive training within BGS laboratories. We visited tourist sites around the country in London, Cardiff and Portsmouth experiencing the history and variety in the UK.

African and overseas linkages: BGS is strategically placed to build networks by bringing scientist and specialist together from their already existing linkages and collaborations. Interactions between both myself and Takesure from Zimbabwe, Nottingham University and wider email correspondence with project partners, previous and future CSCUK Fellows has enabled us to develop a network to which we will support one another across Kenya, Zimbabwe, Zambia and Malawi to develop laboratory capabilities and design and implement improvement plans appropriate to our setting. There are further opportunities for collaboration in many areas including exchange of scientific ideas, University laboratory management and Inter-laboratory Standardisation, which will build synergies and improve the laboratory confidence output in our laboratories. 

While the programme was intensive, the holidays particularly the bank holidays allowed for visiting of places of historical interest, below Takesure Tendayi relaxes at some of the notable places of interest.

HMS Warrior Ship (Portsmouth Historic Harbour, Portsmouth), 10 Downing Street, Westminster, London, George Green’s Windmill Sneinton, Nottingham, The Great Oak Tree, Sherwood Forest, Mansfield.

Chatting with Senior citizens at the acclaimed ‘oldest pub’ Ye Old Trip to Jerusalem (Nottingham),  Internationally acclaimed TV Personalities (Cardiff), Soccer Fanatics, World renowned Martial Arts Experts (Nottingham).

Our next step was to attend joint training activities in Lusaka in September as part of a wider Royal Society-DFID project, linking laboratories from eight organisations across the four countries. The emailing and WhatsApp groups is help to one another in planning appropriate strategies for improving our laboratories, such as our own round robin analytical exercises using our own in-house produced reference materials which will provide a measure of performance for analytical data.

 

By David Samoie, University of Eldoret and

Takesure Tendayi, University of Zimbabwe

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam 2018-09-18

    Abstract

    This study aimed to investigate the effects of temperature inversions on the concentration of some pollutants in the atmosphere in Hanoi City, Vietnam, during the period from 2011 to 2015. This work also aimed to evaluate relationships between the thermal inversion and health effects that are associated with air pollution. During this period, the temperature inversions were most frequently presenting from November to March in Hanoi City. Air quality data was gathered from air quality monitoring stations located in the study area. The data showed that levels of NO2, SO2, PM10 and PM2.5 increased when the inversions strengthened. Cases of two types of diseases (acute respiratory diseases and cardiovascular diseases), which are linked to atmospheric air pollution, were considered on number of patients under 15 and above 60 years old at National Geriatric Hospital and National Otorhinolaryngology Hospital. There was significant increase in the daily average number of hospital visits with increasing surface-based inversions. The statistical analysis showed that the temperature inversions correlated with concentration of air pollutants and the number of patients in 5 years.

  • Evaluation of the diagnostic ratios of adamantanes for identifying seriously weathered spilled oils from simulated experiment and actual oil spills 2018-09-17

    Abstract

    The composition and physical properties of spilled oil have great changes during the seriously weathering process. It brings great difficulties to the source identification of oil spill. So the stable and trustworthy diagnostic ratios (DRs) for accurate identification of severely weathered spilled oils are very important. The explosion of Sinopec pipeline happened on November 22, 2013 at Qingdao, China. Local beaches at Jiaozhou Bay were polluted by spilled oils. We have collected original spilled oil samples from an area free from human interference near the oil leakage point after the accident. Synchronized with actual beach weathering, laboratory experiments were conducted to simulate oil weathering for 360 days by using the collected original spilled oil samples. Based on t test and the repeatability limit method, 50 diagnostic ratios (DRs) of adamantanes were screened. Four DRs, namely 1,3-dimethyladamantane/total dimethyladamantane, 1-methyladamantane/(1-methyladamantane + 1,3-dimethyladamantane), dialkyl diamantane/total diamantane, and diamantane/(diamantane + dialkyl diamantane), have maintained remarkable stability during the simulated weathering experiments and field weathering process. These stable ratios can retain the characteristics of oil source during weathering. They are very beneficial to improve the accuracy of identifying the source of severely weathered oil and can be used as an effective supplement to existing index system for source identification.

  • Environmental impact assessment of uranium exploration and development on indigenous land in Labrador (Canada): a community-driven initiative 2018-09-17

    Abstract

    There is hardly any study on environmental impacts of uranium exploration and mining development prior to actual mining activities. Rather, the majority of the literature addresses the environmental impacts of either ongoing or decommissioned mines. The objective of the study was to measure the possible radioactive contamination (total uranium and lead) in the local ecosystem surrounding an abandoned uranium development site on indigenous land in Labrador (Canada). Water (brook and ponds), soil/sediments (brook and ponds), plants (growing along the brook and pond shores), and local fish (trout) and clams from bays were collected from mine development site, downstream, and control sites. Uranium and lead mobilization in the local environment appears to be slightly enhanced near the proposed mining site, but rapidly drops downstream. Developing a low-cost, community-based environmental health monitoring tool is an ideal strategy for generating baseline information and further follow-up.