SEGH Articles

A model for Quality Assurance, Lab Management and Good Laboratory Practices for Africa

06 October 2017
David and Takesure describe their efforts to improve quality assurance in the environmental chemistry labs in Kenya and Zimbabwe

 

My Name is David Samoei from the University of Eldoret (UoE) in Kenya. I work as a Senior Technician in the School of Environmental Studies, Department of Environmental Biology and Health. I assist in the project that explores links between soil geochemistry and the spatial incidence of oesophageal cancer in Kenya (http://britgeopeople.blogspot.co.uk/2016/03/geochemistry-and-health-in-kenyan-rift.html). I undertook a Commonwealth Professional Fellowship (CSCUK) 2017 alongside a colleague, Takesure Tendayi who is also a Chief laboratory technician from the University of Zimbabwe School of Agriculture and Soil Sciences. This training took place with the Inorganic Geochemistry team at the British Geological Survey (BGS) in Nottingham.

Our training exposed us to the use of state of art laboratory equipment i.e. ICP-MS, IC and NPOC. Due to the sensitivity of these equipment, I have an improved understanding of the importance of proper sample collection, sample handling, preparation of bulk reference materials and their need for Good Laboratory Practices that require clean environments, good protocols for sample and data traceability.

As a result, we were exposed to Quality Control (QC), Data Management and Interpretative Skills with the use of simple excel spread sheet tools incorporating formulas to manage simple statistics, QC performance charts for laboratory equipment, handling of data outputs through to the client/end-user, importance of using certified reference materials and many more controls.  All of which provide confidence in data issued from a laboratory for use in a regulatory, industry or peer review environment. We were introduced to the concept of Quality Assurance (QA), which is comprehensively wrapped up in ISO 17025. Whilst not every laboratory requires ISO accreditation, the maintenance of a quality management system is crucial to a laboratory, again for confidence in data outputs.  The overview of principles of QA, which includes documentation, Standard Operating Procedures (SOP's), Quality Control samples and monitoring processes will help us develop our own systems in Africa and understand the challenges to implement them and possibly even aim for appropriate accreditation. Our collaboration with the BGS laboratories will act as a bench mark to this monumental task. This can be achieved in a stepwise and staggered manner. Accreditation is possible for African laboratories.

Health and Safety, Waste Management is an integral part in all the processes and systems in laboratories in general, to safeguard staff safety, comply with legal and regulatory frameworks, ensure control of chemicals, hazardous equipment or procedures to minimise risk where possible. The safety designs, training instruction, and personal protective equipment (PPE) made a good impact on me, being asthmatic I (David) was able to work in soil sample preparation laboratories without any complication, an area which could otherwise be dirty and dusty without extensive controls in place to protect staff and minimise sample contamination. This knowledge will be used to introduce simple steps to gradually improve awareness of health and safety, and waste management in our laboratories back in Africa.

We experienced field collections visiting Colchester Zoo for Fiona Sach’s PhD project (http://britgeopeople.blogspot.co.uk/2016/09/zoo-elephants-help-their-wild.html), introducing QA from collection through to reporting. We explored more the UK during our training, which coincided with four bank holidays; these gave us opportunities to tour and interact with the wider British National Cultural Heritage. These moments were good refreshing breaks from the intensive training within BGS laboratories. We visited tourist sites around the country in London, Cardiff and Portsmouth experiencing the history and variety in the UK.

African and overseas linkages: BGS is strategically placed to build networks by bringing scientist and specialist together from their already existing linkages and collaborations. Interactions between both myself and Takesure from Zimbabwe, Nottingham University and wider email correspondence with project partners, previous and future CSCUK Fellows has enabled us to develop a network to which we will support one another across Kenya, Zimbabwe, Zambia and Malawi to develop laboratory capabilities and design and implement improvement plans appropriate to our setting. There are further opportunities for collaboration in many areas including exchange of scientific ideas, University laboratory management and Inter-laboratory Standardisation, which will build synergies and improve the laboratory confidence output in our laboratories. 

While the programme was intensive, the holidays particularly the bank holidays allowed for visiting of places of historical interest, below Takesure Tendayi relaxes at some of the notable places of interest.

HMS Warrior Ship (Portsmouth Historic Harbour, Portsmouth), 10 Downing Street, Westminster, London, George Green’s Windmill Sneinton, Nottingham, The Great Oak Tree, Sherwood Forest, Mansfield.

Chatting with Senior citizens at the acclaimed ‘oldest pub’ Ye Old Trip to Jerusalem (Nottingham),  Internationally acclaimed TV Personalities (Cardiff), Soccer Fanatics, World renowned Martial Arts Experts (Nottingham).

Our next step was to attend joint training activities in Lusaka in September as part of a wider Royal Society-DFID project, linking laboratories from eight organisations across the four countries. The emailing and WhatsApp groups is help to one another in planning appropriate strategies for improving our laboratories, such as our own round robin analytical exercises using our own in-house produced reference materials which will provide a measure of performance for analytical data.

 

By David Samoie, University of Eldoret and

Takesure Tendayi, University of Zimbabwe

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of radon concentration and heavy metal contamination in groundwater of Udhampur district, Jammu & Kashmir, India 2017-10-16

    Abstract

    Radon concentration was measured in water samples of 41 different locations from Udhampur district of Jammu & Kashmir, India, by using RAD7 and Smart RnDuo monitor. The variation of radon concentration in water ranged from 1.44 ± 0.31 to 63.64 ± 2.88 Bq L−1, with a mean value of 28.73 Bq L−1 using RAD7 and 0.64 ± 0.28 to 52.65 ± 2.50 Bq L−1, with a mean value of 20.30 Bq L−1 using Smart RnDuo monitor, respectively. About 17.07% of the studied water samples recorded to display elevated radon concentration above the reference range suggested by United Nation Scientific Committee on the Effects of Atomic Radiations (UNSCEAR). The mean annual effective dose of these samples was determined, and 78.95% samples were found to be within the safe limits set by World Health Organisation (WHO) and European Council (EU). The study revealed good agreement between the values obtained with two methods. Heavy metals (Zn, Cd, Fe, Cu, Ni, As, Hg, Co, Pb and Cr) were determined in water samples by microwave plasma atomic emission spectrometer, and their correlation with radon content was also analysed.

  • Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations 2017-10-13

    Abstract

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO4], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO4] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO4] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO4] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO4] are related to releases from coal mining or burning rather than oil and gas development.

  • Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses 2017-10-12

    Abstract

    The production of commercial livestock and poultry often involves using with antibiotics and feed additives, such as oxytetracycline (OTC) and copper (Cu). These are often excreted into the soil by animal feces; hence, combined pollutants may contaminate the soil. To evaluate single and combined toxic effects of OTC and Cu on the soil ecology, changes in quantities of bacteria, fungi, and actinomycetes in the soil were studied over a 28-d incubation period by a plate count method, microbes numbers counted on days 7, 14, 21, and 28. Abundances of ammonia monooxygenase (amoA) gene expression by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in soil samples also were tested by real-time polymerase chain reactions (RT-PCRs) on day 21. The results revealed that the numbers of bacteria, fungi and actinomycetes and amoA genes copies of AOA and AOB were reduced seriously by exposure to Cu (1.60 mmol/kg). Similarly, the combined pollution treatments (mole ratios of OTC: Cu was 1:2, 1:8, and 1:32) also had inhibitory effect on bacteria, fungi, and actinomycetes numbers and amoA gene copies of AOA and AOB; the inhibitory rate was on obvious growth trend with the increasing mole ratios. Effects from single OTC pollution were found on bacteria (days 7 and 14), fungi (days 7, 14, 21, and 28), and AOA-amoA gene copies (day 21), with promotion at a low concentration (0.05 mmol/kg) and suppression at higher concentrations (0.2 and 0.8 mmol/kg). Also, numbers of bacteria, fungi, and actinomycetes decreased with longer culture times. Combining OTC and Cu led to a higher inhibition of soil microbes than when either chemical was used alone. However, there was no significant relationship between single and combined toxic chemicals because of their complicated interactions, either antagonistic or synergistic. The results also indicated the sensitivity of bacteria, fungi, actinomycetes on toxic chemicals existed difference and that the AOA were more tolerant than the AOB to these chemicals.