SEGH Articles

A model for Quality Assurance, Lab Management and Good Laboratory Practices for Africa

06 October 2017
David and Takesure describe their efforts to improve quality assurance in the environmental chemistry labs in Kenya and Zimbabwe

 

My Name is David Samoei from the University of Eldoret (UoE) in Kenya. I work as a Senior Technician in the School of Environmental Studies, Department of Environmental Biology and Health. I assist in the project that explores links between soil geochemistry and the spatial incidence of oesophageal cancer in Kenya (http://britgeopeople.blogspot.co.uk/2016/03/geochemistry-and-health-in-kenyan-rift.html). I undertook a Commonwealth Professional Fellowship (CSCUK) 2017 alongside a colleague, Takesure Tendayi who is also a Chief laboratory technician from the University of Zimbabwe School of Agriculture and Soil Sciences. This training took place with the Inorganic Geochemistry team at the British Geological Survey (BGS) in Nottingham.

Our training exposed us to the use of state of art laboratory equipment i.e. ICP-MS, IC and NPOC. Due to the sensitivity of these equipment, I have an improved understanding of the importance of proper sample collection, sample handling, preparation of bulk reference materials and their need for Good Laboratory Practices that require clean environments, good protocols for sample and data traceability.

As a result, we were exposed to Quality Control (QC), Data Management and Interpretative Skills with the use of simple excel spread sheet tools incorporating formulas to manage simple statistics, QC performance charts for laboratory equipment, handling of data outputs through to the client/end-user, importance of using certified reference materials and many more controls.  All of which provide confidence in data issued from a laboratory for use in a regulatory, industry or peer review environment. We were introduced to the concept of Quality Assurance (QA), which is comprehensively wrapped up in ISO 17025. Whilst not every laboratory requires ISO accreditation, the maintenance of a quality management system is crucial to a laboratory, again for confidence in data outputs.  The overview of principles of QA, which includes documentation, Standard Operating Procedures (SOP's), Quality Control samples and monitoring processes will help us develop our own systems in Africa and understand the challenges to implement them and possibly even aim for appropriate accreditation. Our collaboration with the BGS laboratories will act as a bench mark to this monumental task. This can be achieved in a stepwise and staggered manner. Accreditation is possible for African laboratories.

Health and Safety, Waste Management is an integral part in all the processes and systems in laboratories in general, to safeguard staff safety, comply with legal and regulatory frameworks, ensure control of chemicals, hazardous equipment or procedures to minimise risk where possible. The safety designs, training instruction, and personal protective equipment (PPE) made a good impact on me, being asthmatic I (David) was able to work in soil sample preparation laboratories without any complication, an area which could otherwise be dirty and dusty without extensive controls in place to protect staff and minimise sample contamination. This knowledge will be used to introduce simple steps to gradually improve awareness of health and safety, and waste management in our laboratories back in Africa.

We experienced field collections visiting Colchester Zoo for Fiona Sach’s PhD project (http://britgeopeople.blogspot.co.uk/2016/09/zoo-elephants-help-their-wild.html), introducing QA from collection through to reporting. We explored more the UK during our training, which coincided with four bank holidays; these gave us opportunities to tour and interact with the wider British National Cultural Heritage. These moments were good refreshing breaks from the intensive training within BGS laboratories. We visited tourist sites around the country in London, Cardiff and Portsmouth experiencing the history and variety in the UK.

African and overseas linkages: BGS is strategically placed to build networks by bringing scientist and specialist together from their already existing linkages and collaborations. Interactions between both myself and Takesure from Zimbabwe, Nottingham University and wider email correspondence with project partners, previous and future CSCUK Fellows has enabled us to develop a network to which we will support one another across Kenya, Zimbabwe, Zambia and Malawi to develop laboratory capabilities and design and implement improvement plans appropriate to our setting. There are further opportunities for collaboration in many areas including exchange of scientific ideas, University laboratory management and Inter-laboratory Standardisation, which will build synergies and improve the laboratory confidence output in our laboratories. 

While the programme was intensive, the holidays particularly the bank holidays allowed for visiting of places of historical interest, below Takesure Tendayi relaxes at some of the notable places of interest.

HMS Warrior Ship (Portsmouth Historic Harbour, Portsmouth), 10 Downing Street, Westminster, London, George Green’s Windmill Sneinton, Nottingham, The Great Oak Tree, Sherwood Forest, Mansfield.

Chatting with Senior citizens at the acclaimed ‘oldest pub’ Ye Old Trip to Jerusalem (Nottingham),  Internationally acclaimed TV Personalities (Cardiff), Soccer Fanatics, World renowned Martial Arts Experts (Nottingham).

Our next step was to attend joint training activities in Lusaka in September as part of a wider Royal Society-DFID project, linking laboratories from eight organisations across the four countries. The emailing and WhatsApp groups is help to one another in planning appropriate strategies for improving our laboratories, such as our own round robin analytical exercises using our own in-house produced reference materials which will provide a measure of performance for analytical data.

 

By David Samoie, University of Eldoret and

Takesure Tendayi, University of Zimbabwe

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Pesticides in the typical agricultural groundwater in Songnen plain, northeast China: occurrence, spatial distribution and health risks 2019-05-25

    Abstract

    Songnen plain is an important commodity grain base of China, and this is the first study on the comprehensive detection of multiple pesticides in groundwater. Based on an analytical method of 56 pesticides, 30 groundwater samples were collected and analyzed. At least 4 pesticides were detected in each sample and 32 out of 56 pesticides were detected. The average detected levels of individual pesticides were approximately 10–100 ng/L. Organophosphorus pesticides and carbamate pesticides were the dominant pesticides, and their percentage of total pesticide concentrations were 35.9% and 55.5%, respectively. Based on the spatial distribution, the characteristic of nonpoint source pollution was indicated in the whole study area except for a point source pollution with the influence of a sewage oxidation pond. Nine core pesticides and three distinct clusters of the core pesticides with various concentration patterns were revealed by cluster analysis. Linear regression identified a significant relationship between the cumulative detections and the cumulative concentrations, providing access to identify the outlying contaminant events that deviate substantially from the linear trend. A new insight for prediction of pesticide occurrence was provided by the Pearson correlation between some individual pesticide concentrations and the cumulative detections or the cumulative concentrations. According to health risk assessment, the residual pesticides posed medium risks for children and infants and approximately 90% of risks were composed of β-HCH, dimethoate, ethyl-p-nitrophenyl phenylphosphonothioate and methyl parathion. These findings contributed to establishing a database for future monitoring and control of pesticides in agricultural areas.

  • Correction to: Potential CO 2 intrusion in near-surface environments: a review of current research approaches to geochemical processes 2019-05-22

    In the original publication of the article, the third author name has been misspelt. The correct name is given in this correction. The original version of this article was revised.

  • The legacy of industrial pollution in estuarine sediments: spatial and temporal variability implications for ecosystem stress 2019-05-22

    Abstract

    The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of ‘contamination’ mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific ‘stressors’ that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.