SEGH Articles

Aquaculture: Pathway to food security in Kenya: Continuing the Research

06 March 2019
Dr Andrew Marriott (Centre for Environmental Geochemistry, BGS) tells us about the impact of his project investigating aquaculture and food security in Lake Victoria, Kenya. In addition, he discusses how he's been communicating the results and potential future research.

Well, it’s been a fun ride and we have now finally come full circle for the Aquaculture project in Kenya. As I mentioned way back in May 2018 (Aquaculture blog) a small group from the Inorganic Geochemistry team (IG) at the British Geological Survey (BGS) in collaboration with The School of Environmental Sciences at the University of Eldoret (UoE), The School of Veterinary Medicine and Science (UoN), and the experienced research team at the Kenyan Marine Fisheries Research Institute (KMFRI) based in Kisumu, Kenya were successful in winning funding from the Newton-Utafiti International Links programme with the British Council. The project investigated problems of “food insecurity” in the Kenyan portion of Lake Victoria (only 6%) and the implications of both anthropogenic pollution and land run-off from changes in land use (soil erosion) and their impact on the health and nutritional quality of aquaculture farmed fish for “food safety” as proxies for pollution.

The idea of exploring how micronutrients contributed to Aquaculture fish, their nutritional quality and the associated problems of pollution pathways and food security were challenging, working in the second largest lake in the world. Sampling locations were difficult to navigate due to thick mats of water hyacinth (Fig 1) and collecting waters, sediment grabs and cores (Fig 2 & 3) in 2 metre swells in the Lake would have tested the most hardened of sailors.

Nonetheless, water, sediment samples and most importantly wild and caged fish samples (Fig 4 & 5) were collected from the May, November and January sampling trips for the project. Samples were prepared in Kenya ready for shipping to and analysis at BGS to identify sources of potential circulation of pollutants from the north to southern locations of Kenya’s borders.

 

Fig 1. Photograph showing the problems of invasive water hyacinth and navigation for the local fishermen and communities around the Lake.

 

Fig 2. Van Veer sediment grab with collected sediment from the bottom of the lake which will be analysed for trace element concentrations (left). 

Fig 3. Deployment of the Uwitec Corer from the KMFRI R.V. Uvumbuzi. The core is extruded at 1cm increments to allow trace elemental analysis and Pb210 dating (right). 

 

Fig 4. Aquaculture cages (20 x 20m) housing 10,000+ Nile Tilapia (left).  

Fig 5. Nile Tilapia (Oreochromis niloticus) collected from a local cage farm (right).

 

Initial findings of the Aquaculture project were disseminated at a stakeholder’s workshop including NGOs and local aquaculture cage owners and fisheries managers. The workshop was held on the 25th January at KMFRI headquarters with an introduction from our hosts KMFRI about the Lake and it’s management, followed by talks given from the Aquaculture project leaders Dr Andy Marriott (BGS, PI) and Prof Odipo Osano (Eldoret, Co-PI) and a talk given from Safina Musa a member of the KMFRI research team.

        

Fig 6. Dr Chrisphine Nyamweya (KMFRI) opening the proceedings at the Aquaculture Workshop at KMFRI headquarters (left).

Fig 7. Safina Musa discussing the state of aquaculture in Kenya from the KMFRI research team (right).

 

A breakout session was then organised with those attending split into four groups to discuss the findings of the project and to highlight their concerns for the fisheries, aquaculture farming and the state of the Lake. The groups having elected their spokesperson would then put their questions to the project team leaders. Questions from the aquaculture aspect and what possible impact cage culture would have on the local fishermen and water quality were predominant with problems of environmental issues pertaining to the overwhelming issue of water hyacinth were also a major concern.

 

Fig 8. Dr Andy Marriott addressing the delegates at the Aquaculture Workshop at KMFRI 2019.

 

Dr Marriott explained that “wild fisheries and aquaculture coexisted in a relationship and not one of competition” with “one helping to sustain the other” e.g. preventing possible future fish stocks collapsing (Fig 8). Additional to this was the importance of fish not only as a protein source but for their essential micronutrients which could be one of a number of potential routes to food security in the Kenyan diets. However, fish alone are not the only answer to the provision of essential micronutrients, they also need to be supplemented with a diversified diet e.g. kale, sukuma wiki (collard greens), pumpkin leaves, to boost these as part of the recommended daily intake (RDI).

Moving on from the fisheries discussions, water quality and information on pollution and their pathways were addressed with Prof Osano indicating the “problem was more widely dispersed than just localised input”, with areas covering the drainage basins in Kenya and their effect on the Lake again highlighted from his presentation (Fig 9).

Gaps in the knowledge base needed to be addressed, with both the input contributions “point source” and their impact “end point” effects will need to be monitored if we are to implement measures to control, reduce or more importantly understand these environmental impacts. Collaborative projects between UoE and BGS (Geo-chem & Health, Kenya Rift Valley, IG in Kenya Part II) are continuing to assess the issues of environmental impacts from anthropogenic activities and their connection with health. Further funding for PhDs and MScs hopefully will contribute further to the research.

 

Fig 9. Prof Osano indicating the larger catchment and drainage areas surrounding the Kenyan part of Lake Victoria.

 

Finally, an address was made by Lilian Wanjohi (British Council, Kenya) and Caroline Nyanoti (British High Commission, Nairobi) part of the Newton-Utafiti International Links funding body, in congratulating all involved in the Aquaculture project and the achievement of the findings, which highlighted the need to continue to monitor and manage the Lake and to address the concerns of all who use and live in and around its waters.

Dr Marriott concluded that future funding had been successful (Nottingham-GCRF seed funds) which would continue our work from the Newton-Utafiti project through to summer 2019. A further bid is in place (BBSRC-GCRF), which if successful would mean continued work to 2021 on the Lake studying problems of pollution in Aquaculture and wild fish e.g. Food Safety, Human and Ecological Health, through water quality assessments studying associated sedimentation rates in water from soil erosion and changes in land-use.

 

Fig 10. Delegates and hosts attending the Newton-Utafiti workshop on 25th January 2019.

 

Acknowledgements:

I would like to thank the Newton-Utafiti International Links programme and the British Council for funding the project and allowing us to do this research. I would also like to thank the BGS-ODA programme and Center for Environmental Geochemistry for their continued financial and technical support. I would also like to thank all of the participants from the County Government of Kisumu, Lake Victoria Environmental Management Program, National Environment Management Authority, Lake Basin Development Authority, Kenya Maritime Authority, Jaramogi Oginga Odinga University of Science and Technology and researchers from KMFRI who took time to attend the workshop and give us invaluable feedback on the Lake.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India 2019-07-19

    Abstract

    Island populations are rarely studied for risk of arsenic (As) poisoning. As poisoning, multimetal contamination and people’s perceptions of health risks were assessed on India’s Majuli Island, the largest inhabited river island in the world. This holistic approach illustrated the association of groundwater contamination status with consequent health risk by measuring levels of inorganic arsenic (iAs) in groundwater, borehole sediment and biological samples (hair, nails and urine). Piper and Gibbs’s plots discerned the underlying hydrogeochemical processes in the aquifer. Demographic data and qualitative factors were evaluated to assess the risks and uncertainties of exposure. The results exhibited significant enrichment of groundwater with As, Mn and Fe along with significant body burden. Maximum Hazard Index values indicated severe non-carcinogenic health impacts as well as a significantly elevated risk of cancer for both adults and children. Most (99%) of the locally affected population did not know about the adverse health impacts of metal contamination, and only 15% understood bodily ailments and health issues. Various aspects of the island environment were used to elucidate the status of contamination and future risk of disease. A projection showed adverse health outcomes rising significantly, especially among the young population of Majuli, due to overexposure to not only As but also Ba, Mn and Fe.

  • The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study 2019-07-19

    Abstract

    Agricultural soil samples were collected from the areas where edible plants had been cultivated in southern Poland. The PHE content decreased in proportion to the median value specified in brackets (mg/kg d.m.) as follows: Zn (192) > Pb (47.1) > Cr (19.6) > Cu (18.8) > Ni (9.91) > As (5.73) > Co (4.63) > Sb (0.85) > Tl (0.04) > Cd (0.03) > Hg (0.001) > Se (< LOQ). No PHE concentrations exceeded the permissible levels defined in the Polish law. The PHE solubility (extracted with CaCl2) in the total concentration ranged in the following order: Fe (3.3%) > Cd (2.50%) > Ni (0.75%) > Zn (0.48%) > Cu (0.19%) > Pb (0.10%) > Cr (0.03%). The soil contamination indices revealed moderate contamination with Zn, ranging from uncontaminated to moderately contaminated with Pb, and, practically, no contamination with other PHEs was identified. The ecological risk indices revealed that soils ranged from uncontaminated to slightly contaminated with Zn, Pb, As, Cu, and Ni. The PCA indicated natural sources of origin of Co, Cu, Hg, Sb, Zn, Cr, and Pb, as well as anthropogenic sources of origin of Cd, Ni, As, and Tl. The human health risk assessment (HHRA) for adults and children decreased in the following order of exposure pathways: ingestion > dermal contact > inhalation of soil particles. The total carcinogenic risk values for both adults and children were at the acceptable level under residential (1.62E−05 and 6.39E−05) and recreational scenario (5.41E−06 and 2.46E−05), respectively, as well as for adults in agricultural scenario (1.45E−05). The total non-carcinogenic risk values for both adults and children under residential scenario (1.63E−01 and 4.55E−01, respectively), under recreational scenario (2.88E−01 and 6.69E−01, respectively) and for adults (1.03E−01) under agricultural scenario indicated that adverse health effects were not likely to be observed. Investigated soils were fully suitable for edible plant cultivation.

  • Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps 2019-07-17

    Abstract

    Potentially harmful elements (PHEs) manganese (Mn), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) were measured in human hair/nails, staple crops and drinking water to ascertain the level of exposure to dust transference via wind and rain erosion for members of the Mugala community living near a mine waste dump in the Zambian Copperbelt. The mean PHE concentrations of hair in decreasing order were Zn (137 ± 21 mg/kg), Cu (38 ± 7 mg/kg), Mn (16 ± 2 mg/kg), Pb (4.3 ± 1.9 mg/kg), Ni (1.3 ± 0.2 mg/kg) and Cr (1.2 ± 0.2 mg/kg), Co (0.9 ± 0.2 mg/kg) and Cd (0.30 ± 0.02 mg/kg). Whilst for toenails the decreasing order of mean concentrations was Zn (172 ± 27 mg/kg), Cu (30 ± 5 mg/kg), Mn (12 ± 2 mg/kg), Pb (4.8 ± 0.5 mg/kg), Ni (1.7 ± 0.14 mg/kg) and Co (1.0 ± 0.02 mg/kg), Cr (0.6 ± 0.1 mg/kg) and Cd (0.1 ± 0.002 mg/kg). The concentration of these potentially harmful elements (PHEs) varied greatly among different age groups. The results showed that Mn, Co, Pb, Cd and Zn were above the interval values (Biolab in Nutritional and environmental medicine, Hair Mineral Analysis, London, 2012) at 0.2–2.0 mg/kg for Mn, 0.01–0.20 mg/kg for Co, < 2.00 mg/kg for Pb, < 0.10 mg/kg for Cd and 0.2–2.00 mg/kg for Zn, whilst Ni, Cu and Cr concentrations were within the normal range concentrations of < 1.40 mg/kg, 10–100 mg/kg and 0.1–1.5 mg/kg, respectively. Dietary intake of PHEs was assessed from the ingestion of vegetables grown in Mugala village, with estimated PHE intakes expressed on a daily basis calculated for Mn (255), Pb (48), Ni (149) and Cd (33) µg/kg bw/day. For these metals, DI via vegetables was above the proposed limits of the provisional tolerable daily intakes (PTDIs) (WHO in Evaluation of certain food additive and contaminants, Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives, 2011) for Mn at 70 µg/kg bw/day, Pb at 3 µg/kg bw/day, Ni and Cd 5 µg/kg bw/day and 1 µg/kg bw/day, respectively. The rest of the PHEs listed were within the PTDIs limits. Therefore, Mugala inhabitants are at imminent health risk due to lead, nickel and cadmium ingestion of vegetables and drinking water at this location.