SEGH Articles

Aquaculture: Pathway to food security in Kenya

16 July 2018
Dr Andrew Marriott (Centre for Environmental Geochemistry, BGS) and Prof Odipo Osano (University of Eldoret) tell us about their recent voyage on Lake Victoria as part of an exciting project looking into aquaculture and food security in Kenya

In late December we were successful in obtaining funding through a Newton International Links bid with the British Council. This project aims to investigate problems of food insecurity and the implications of anthropogenic pollutants for food safety, the impact on the health and nutritional quality of aquaculture farmed fish, and the potential of fisheries aquaculture to boost food security and sustainability in Lake Victoria, Kenya. Having been successful in the bid, I was looking forward to working with fish again and using the knowledge gained from my years as a Marine Biologist at Bangor University. The project brings together my experiences working on fisheries aquaculture and from knowledge gained working within the Inorganic Geochemistry team in exploring micronutrients, pollution pathways and the associated problems of food security and nutrition in Aquaculture fish. This collaborative project involves the Inorganic Geochemistry team (IG) at BGS with our old friend Prof Odipo Osano from the School of Environmental Sciences at the University of Eldoret (UoE) with whom we have worked closely for over 2 years. This grant funded project also collaborates with Dr Tracey Coffey and Dr Sharon Egan from the School of Veterinary Science (University of Nottingham), and the experienced research team led by Dr Christopher Mulanda Aura at the Kenyan Marine Fisheries Research Institution (KMFRI) based in Kisumu, Kenya.  

 stakeholder discussions

Stakeholder discussions at KMFRI headquarters between the project team and aquaculture producers


Stakeholder discussions were hosted at KMFRI headquarters between the project team and aquaculture producers explaining how the project will address questions related to pollution pathways (Food Safety-human and ecological health), through studying problems associated with sedimentation rates in water from erosion, or changes in land-use and water quality, as well as the effects of toxic metals as drivers of antimicrobial resistance (AMR). Expanding on this, and linking to other BGS activities ( and interests of the Ministry for Agriculture, Livestock and Fisheries, data will be generated to understand the potential for aquaculture to address ‘hidden hunger’ (deficiencies of essential micronutrients for human and animal health). Questions came quick and fast from those attending, with the fisheries-licence holders and the cage-culture representative being extremely interested in what we were intending to do. However, transparency and open talks through public engagements such as this alleviated any concerns they may have had, and their subsequent assistance in locating sites and communicating with local cage managers proved invaluable.


 Team and Stakeholders

The team and the stakeholders


Attention turned to the fieldwork, which was based on KMFRIs main research vessel R.V. Uvumbuzi (Discovery) based on the Winam Gulf in Kisumu. This allowed us direct access and quicker travel between sampling sites within the Winam Gulf to view and sample the intensity of aquaculture cages along the shores of Lake Victoria (Kenyan side).

 aquaculture cages

Aquaculture cages along the shores of Lake Victoria (Kenyan side)


Cage sizes ranged from a few meters (2x2) to the medium 6x4 meters up to the larger 20x20 meters and housing fish from a few thousand to over 20,000 for the larger 20x20 m cages. Most of the fish (Tilapia) are sold at local markets after growing for 6 months (plate size) or in the case of the larger cages (>10m) sold to merchants after growing for up to 8 months for re-sale as fillets. Involving the representative for the aquaculture operators in the stakeholder meeting hosted by KMFRI, provided invaluable as they were able to help in the design of sampling locations, and assist in gaining the trust and co-operation of the managers of each cage site. With the local manager informed in advance of our visit, sampling fish from both within the cages, and from the wild went smoothly and efficiently. Sampling involved all the experience of the project team. Water parameters such as pH, temperature, conductivity and dissolved oxygen were measured either directly from the vessel or from the small canoe brought along for closer inshore work.


The KMFRI team on the canoe


After measurements of the water were obtained, the process of collecting water samples from just below the surface (approx. 1 m), and from depth, was completed using a niskin water sampler system. The collected water was then filtered using 0.45 um filters. Water samples were observed to be slightly discoloured around the shores of Winam Gulf which isa possible indication of high sedimentation rates from land erosion. This colouration cleared when we moved further out to the main channel at Rusinga in the Lake. Finally the collection of a sediment sample was taken using the Van Veen Grab Sampler for both biogeochemical analysis in the UK, and benthic microbiological analysis by the team at KMFRI.

 Van Veen Grab Sampler

The Van Veen Grab Sampler


Most of the sediment collected near the Winam Gulf area near the shore had a strong H2S aroma indicating possible eutrophic conditions in that area. Fish were sampled both from the cages and also where possible from the wild, using fish locally caught by the local fishermen.

 Sampled caged Talapia

Sampled caged Tilapia fish


Fish were processed on board the R.V. Uvumbuzi, and measurements were taken to record the biological data. Finally sub-samples of muscle tissue were taken and vacuum sealed for subsequent analysis of trace metals, and tissue for DNA extraction and Anti-Microbial Resistance studies.


 Marriott fish sampling

Andy Marriott sub-sampling muscle tissue


After 3 long days working on the Lake, the water, sediment and fish tissue samples were finally off-loaded from the RV Uvumbuzi and transported to the School of Environmental Sciences (University of Eldoret). Here sediment samples were partially dried and excess water removed for transportation back to the Inorganic Geochemistry labs in the UK for ICP- MS analysis. Similarly, fish tissue will be measured for trace metals and DNA and AMR analyses at the School of Veterinary Science (University of Nottingham).

Water, fish tissue and sediment geochemistry data in addition to ongoing studies by UoE and KMFRI will help to identify possible pollution pathways from anthropogenic activities, and sediment loading from erosion or changes in land-use for design of further investigation in the Winam Gulf and shores of Lake Victoria. Bio-geochemistry data from this and subsequent investigations will be invaluable to KMFRI in advising on the future siting of aquaculture cages to ensure food safety for human and ecological health. Given that ‘wild’ fish catches are unsustainable in Lake Victoria, aquaculture/farming of fish through sustainable methods is an important approach to food sufficiency and in addressing ‘hidden hunger’ along the shoreline of Lake Victoria and further inland.


I would like to thank the Newton International Links programme and the British Council for funding the project. I would also like to thank the BGS-ODA programme and Center for Environmental Geochemistry for financial support and technical expertise.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Health risks and source identification of dietary exposure to indicator polychlorinated biphenyls (PCBs) in Lanzhou, China 2019-09-19


    Polychlorinated biphenyls (PCBs) are widely present in multiple environmental media even long after the phaseout, posing a health risk to the general population. Dietary intake is the major exposure route of PCBs; however, information is limited regarding PCBs in food that people directly consume. This study aims to measure personal exposure to indicator PCBs, evaluate the health risks, and identify their sources in a typical metropolitan city in China. Multi-day food samples were collected from 21 subjects in Lanzhou, Gansu Province, in two seasons using the duplicate plate method. Samples were extracted and analyzed for seven indicator PCBs using gas chromatography/mass spectrometry. Average daily doses (ADDs) of ∑7PCBs were estimated using Monte Carlo analysis with food intake information. Results show that PCB-118 and PCB-180 were the major congeners in food samples with average concentrations of 1.42 and 1.11 ng/g, respectively. The average (± SD) ADD of ∑7PCBs was 26.47 ± 22.10 ng/kg day among adults aged 18–69 years and displayed small variation across age groups. Comparing with the chronic RfD of 7 ng/kg day, 67% of people had their ADDs exceeding this threshold. The median cancer risk was 5.52 × 10−5, and 51% of residents had risks exceeding the action level of 10−4. The principal component analysis identified waste incineration, gasoline engine production, and leakage of #1 PCBs as the major PCBs sources. In conclusion, a large portion of Lanzhou residents has high non-cancer and cancer risks from dietary exposure to PCBs, which warrants control actions targeting these major sources.

  • Comprehensive assessment of heavy metals pollution of farmland soil and crops in Jilin Province 2019-09-18


    As a major agricultural province in China, it is necessary to study the content of heavy metals in farmland soil and crop in Jilin Province and to evaluate the risks to ecology and human health. This study presented the work completed on 79 soil samples, 10 rice samples, 66 maize samples and 15 soybean samples collected from Jilin Province farmland and evaluated six heavy metals (Zn, Cu, Pb, Cd, Hg and As) concentrations. The results showed that the concentrations of the six heavy metals in farmland soil and crop samples from Jilin Province basically met the soil standards and food health standards of China. The agricultural soil pollution spatial distribution was the most serious in the south of Jilin Province and the lightest in the west. The non-carcinogenic risks faced by children eating crops were higher than those of adults, but the carcinogenic risks were lower than those of adults. Both of the two health risks to adults and children from eating crops were very limited. The results would help determine the heavy metals pollution in farmland soil in Jilin Province efficiently and accurately and helped decision makers to achieve a balance between production and environmental regulation.

  • Sustainability of agricultural and wild cereals to aerotechnogenic exposure 2019-09-14


    In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones.