SEGH Articles

Assessment of the environmental conditions of the Calore river basin (south Italy): a stream sediment approach

23 October 2015
Daniela Zuzolo from the University of Sannio won the Hemphill prize for best student presentation at SEGH 2015 in Bratislava. She provides a follow-up on her presentation.



In 2014 we carried out a study on the stream sediments of the Calore river (a tributary of the Volturno, the biggest south-Italian river) to assess the environmental conditions of a basin that covers 3058 Km2 (Fig.1) of the Campania region and that, until now, has been only marginally studied from this point of view.


Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore river basin is determined mostly by geogenic factors. Figure 2 shows the main lithological features of the study area, while Figure 3 shows the spatial distribution of elemental association factor scores.





The south-western area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); but these anomalies are due to the presence of pyroclastics and alkaline volcanic lithologies.

Even where sedimentary lithologies occur (in northern area), many harmful elements (Co, Cr, Mn, Ni) have shown high concentration levels due to a natural origin.





On the other hand, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropic contribution, is highlighted in many areas characterised by the presence of road junctions, urban settlements and industrial areas. Figure 4 highlights the enrichment factors of these elements: 3 - 4 time higher than the background values. The south-western area of the basin is characterised by a moderate/high degree of contamination (Fig.5), just where the two busiest roads of the area run and the highest concentration of industries occurs.


We assessed the distribution of the potentially harmful elements (PHE) and the related interpretations using geochemical indexes, chemometric approach and mapping of the other relevant information, all linked to PHE distribution.

First of all, 562 stream sediment samples were collected, air-dried, sieved to < 100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS.

Univariate and multivariate statistical analyses of data were performed to show the single element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses, in order to interpret the hypothetical origin of elements’ distribution (natural, anthropogenic or mixed).

The degree of contamination of the area was evaluated through analysing the Contamination Factor index and the production of a Contamination Degree map.

This approach proved successful as it achieved meaningful results and interpretations of complex datasets. It represents a useful tool to evaluate the hypothetical origin of geochemical anomalies of stream sediments; it also allows a quantitative assessment of the metal pollution threat to ecosystem and human health.

by Daniela Zuzoloa*, Domenico Cicchellaa, Lucia Giaccioa, Ilaria Guagliardib, Libera Espositoa

a - Department of Science and Technology, University of Sannio, via dei Mulini 59/A, 82100 - Benevento, Italy

b - Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte Bucci 4, cubo 15B, I-87036 Arcavacata di Rende (CS), Italy

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16


    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10


    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06


    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.