SEGH Articles

Assessment of the environmental conditions of the Calore river basin (south Italy): a stream sediment approach

23 October 2015
Daniela Zuzolo from the University of Sannio won the Hemphill prize for best student presentation at SEGH 2015 in Bratislava. She provides a follow-up on her presentation.



In 2014 we carried out a study on the stream sediments of the Calore river (a tributary of the Volturno, the biggest south-Italian river) to assess the environmental conditions of a basin that covers 3058 Km2 (Fig.1) of the Campania region and that, until now, has been only marginally studied from this point of view.


Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore river basin is determined mostly by geogenic factors. Figure 2 shows the main lithological features of the study area, while Figure 3 shows the spatial distribution of elemental association factor scores.





The south-western area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); but these anomalies are due to the presence of pyroclastics and alkaline volcanic lithologies.

Even where sedimentary lithologies occur (in northern area), many harmful elements (Co, Cr, Mn, Ni) have shown high concentration levels due to a natural origin.





On the other hand, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropic contribution, is highlighted in many areas characterised by the presence of road junctions, urban settlements and industrial areas. Figure 4 highlights the enrichment factors of these elements: 3 - 4 time higher than the background values. The south-western area of the basin is characterised by a moderate/high degree of contamination (Fig.5), just where the two busiest roads of the area run and the highest concentration of industries occurs.


We assessed the distribution of the potentially harmful elements (PHE) and the related interpretations using geochemical indexes, chemometric approach and mapping of the other relevant information, all linked to PHE distribution.

First of all, 562 stream sediment samples were collected, air-dried, sieved to < 100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS.

Univariate and multivariate statistical analyses of data were performed to show the single element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses, in order to interpret the hypothetical origin of elements’ distribution (natural, anthropogenic or mixed).

The degree of contamination of the area was evaluated through analysing the Contamination Factor index and the production of a Contamination Degree map.

This approach proved successful as it achieved meaningful results and interpretations of complex datasets. It represents a useful tool to evaluate the hypothetical origin of geochemical anomalies of stream sediments; it also allows a quantitative assessment of the metal pollution threat to ecosystem and human health.

by Daniela Zuzoloa*, Domenico Cicchellaa, Lucia Giaccioa, Ilaria Guagliardib, Libera Espositoa

a - Department of Science and Technology, University of Sannio, via dei Mulini 59/A, 82100 - Benevento, Italy

b - Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte Bucci 4, cubo 15B, I-87036 Arcavacata di Rende (CS), Italy

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15


    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15


    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10


    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.