SEGH Articles

Award for work on tackling hidden hunger

25 March 2016
Estimates suggest that more than 2 billion people could be suffering from micronutrient deficiencies.

 

 

Estimates suggest that more than 2 billion people could be suffering from micronutrient deficiencies. Among those searching for solutions to this global problem is Muneta Grace Manzeke – a PhD student from the University of Zimbabwe whose work in Zimbabwe is being supported through a new Royal Society-Department for International Development (DFID) Africa Capacity Strengthening Initiative led by The University of Nottingham and the British Geological Survey.

Grace, a PhD student under the Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group in the Department of Soil Science and Agricultural Engineering at the University of Zimbabwe, is looking at on-farm micronutrient malnutrition through understanding factors affecting bioavailability of selenium, zinc and iron in tropical soils. She is also investigating the influence of diverse farmer soil fertility management techniques on crop productivity and human nutrition.

Her work could prove so beneficial to on-farm crop nutrition she has been recognised by the International Fertiliser Society, becoming the first recipient of the Brian Chambers Award for early career researchers in crop nutrition. The award is an industry accolade for researchers working at the MSc or PhD level, who can demonstrate how their work will provide practical benefits to farm crop nutrition. It also provides a cash prize of £1,000 for the winner.

Micronutrient deficiencies lead to impaired physical and cognitive development, increased risk of morbidity in children and reduced work productivity in adults. Selenium and zinc have vital roles in keeping the immune system healthy and iron deficiency and anaemia result in poor pregnancy outcomes.

Grace said: “Smallholder rain-fed agriculture supports livelihoods of more than 60% of the Zimbabwean population. Like any system, it faces various challenges that include poor soils, poor crop yields and climate variability among others. Working in these communities for over 10 years now, SOFECSA partners at the University of Zimbabwe have been promoting impact-oriented research for development through a multi-institutional and inter-disciplinary approach. This has opened an avenue of research that could be explored in these farming communities, some of which require external regional and international support including relevant skills and knowledge to address the inherent and emerging challenges.”

The wider programme – Strengthening African capacity in soil geo-chemistry to inform agricultural and health policies – supported by The University of Nottingham and the British Geological Survey Centre for Environmental Geochemistry –involves core PhD projects based at partner institutions: Lilongwe University of Agriculture and Natural Resources, the Department of Agricultural Research in Malawi; the University of Zambia, the Zambian Agricultural Research Institute, and the Copperbelt  University in Zambia, and the Chemistry & Soils Research Institute in Zimbabwe.

If you want to learn more about the work Grace is doing here’s a link to her blog.

For her Masters, also supported by SOFECSA, Grace specifically focused on exploring the effectiveness of different fertilizer formulations to alleviate zinc deficiency in smallholder maize production systems in Zimbabwe. Grace’s Professional Fellowship to the UK in 2015 was funded by the Commonwealth Scholarship Council UK. She has four publications on zinc nutrition and integrated soil fertility management including papers published in Plant and Soil and Field Crops Research.

Martin Broadley, Professor of Plant Nutrition, in the School of Biosciences at Nottingham, said: “The aim of the current programme is to strengthen the rresearch capacity of universities and research institutions in sub-Saharan Africa (SSA) through focusing on the training of students and technical staff in Africa. Our project is in the priority area of soil science, with a specific focus on how soils underpin healthy nutrition, especially for those involved in producing their own food.  The initial project runs until 2020, however, we are delighted to have attracted additional studentships into the network already, as we seek to ensure the long-term sustainability of this programme.”Other joint network PhD projects focus on wider agriculture and public health questions developed in collaboration with our African partners.”

Martin’s blog with BGS on the project can be found here and follow the project on twitter @AfricaGeochem

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.