SEGH Articles

Award for work on tackling hidden hunger

25 March 2016
Estimates suggest that more than 2 billion people could be suffering from micronutrient deficiencies.

 

 

Estimates suggest that more than 2 billion people could be suffering from micronutrient deficiencies. Among those searching for solutions to this global problem is Muneta Grace Manzeke – a PhD student from the University of Zimbabwe whose work in Zimbabwe is being supported through a new Royal Society-Department for International Development (DFID) Africa Capacity Strengthening Initiative led by The University of Nottingham and the British Geological Survey.

Grace, a PhD student under the Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group in the Department of Soil Science and Agricultural Engineering at the University of Zimbabwe, is looking at on-farm micronutrient malnutrition through understanding factors affecting bioavailability of selenium, zinc and iron in tropical soils. She is also investigating the influence of diverse farmer soil fertility management techniques on crop productivity and human nutrition.

Her work could prove so beneficial to on-farm crop nutrition she has been recognised by the International Fertiliser Society, becoming the first recipient of the Brian Chambers Award for early career researchers in crop nutrition. The award is an industry accolade for researchers working at the MSc or PhD level, who can demonstrate how their work will provide practical benefits to farm crop nutrition. It also provides a cash prize of £1,000 for the winner.

Micronutrient deficiencies lead to impaired physical and cognitive development, increased risk of morbidity in children and reduced work productivity in adults. Selenium and zinc have vital roles in keeping the immune system healthy and iron deficiency and anaemia result in poor pregnancy outcomes.

Grace said: “Smallholder rain-fed agriculture supports livelihoods of more than 60% of the Zimbabwean population. Like any system, it faces various challenges that include poor soils, poor crop yields and climate variability among others. Working in these communities for over 10 years now, SOFECSA partners at the University of Zimbabwe have been promoting impact-oriented research for development through a multi-institutional and inter-disciplinary approach. This has opened an avenue of research that could be explored in these farming communities, some of which require external regional and international support including relevant skills and knowledge to address the inherent and emerging challenges.”

The wider programme – Strengthening African capacity in soil geo-chemistry to inform agricultural and health policies – supported by The University of Nottingham and the British Geological Survey Centre for Environmental Geochemistry –involves core PhD projects based at partner institutions: Lilongwe University of Agriculture and Natural Resources, the Department of Agricultural Research in Malawi; the University of Zambia, the Zambian Agricultural Research Institute, and the Copperbelt  University in Zambia, and the Chemistry & Soils Research Institute in Zimbabwe.

If you want to learn more about the work Grace is doing here’s a link to her blog.

For her Masters, also supported by SOFECSA, Grace specifically focused on exploring the effectiveness of different fertilizer formulations to alleviate zinc deficiency in smallholder maize production systems in Zimbabwe. Grace’s Professional Fellowship to the UK in 2015 was funded by the Commonwealth Scholarship Council UK. She has four publications on zinc nutrition and integrated soil fertility management including papers published in Plant and Soil and Field Crops Research.

Martin Broadley, Professor of Plant Nutrition, in the School of Biosciences at Nottingham, said: “The aim of the current programme is to strengthen the rresearch capacity of universities and research institutions in sub-Saharan Africa (SSA) through focusing on the training of students and technical staff in Africa. Our project is in the priority area of soil science, with a specific focus on how soils underpin healthy nutrition, especially for those involved in producing their own food.  The initial project runs until 2020, however, we are delighted to have attracted additional studentships into the network already, as we seek to ensure the long-term sustainability of this programme.”Other joint network PhD projects focus on wider agriculture and public health questions developed in collaboration with our African partners.”

Martin’s blog with BGS on the project can be found here and follow the project on twitter @AfricaGeochem

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country 2017-09-19

    Abstract

    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.

  • Erratum to: Preliminary assessment of surface soil lead concentrations in Melbourne, Australia 2017-09-11
  • In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute? 2017-09-02

    Abstract

    Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.