SEGH Articles

The CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

15 January 2018
Professor Nadine Mattielli, of Universite Libre de Bruxelles, provides us with an exciting introduction to the CHASE project, including some breathtaking photographs from a recent fieldwork expedition to Antarctica.

CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

Atmospheric  composition  change  is  a  main  driver  of  present  and  near-future  climate  change  with  airborne  particles  playing  a major  role  therein.  But  the  aerosol  fluxes  and  sources  in  Antarctica  and  its  closely  associated  Southern  Ocean  are  poorly constrained, in particular the particle chemistry. Antarctica is considered the best-preserved region on Earth from anthropogenic emissions.  However,  the  impact  of  anthropogenic  airborne  particles  and  pollutants  could  be  significantly  larger  than  expected. Furthermore,  a  detailed  understanding  of  present-day  atmospheric  transport  pathways  of  particles  and  of  volatile  organic compounds (VOC) from source to deposition in Antarctica remains essential to document biogeochemical cycles and the relative importance of natural and anthropogenic compounds, which are not well constrained at the moment. Those information  are  relevant,  not  only  to  interpret  climatic  data  extracted  from  ice  cores  and  the  transport  and  deposition  of  mineral  nutrients,  but  are also essential  to better  identify  organic  micro-pollutants  in  polar  regions  and  their  potential  interactions  with  human  activities  and  health

The  research  project  CHASE  (Unravelling Particle Chemistry in Dronning Maud Land (Antarctica): from atmosphere to surface snow)  funded  by  BELSPO  (Belgian Science Policy)  will  provide  detailed  physical-chemical  analyses  of  both atmospheric  and  surface  snow  particles  as  well  as  of  VOCs  and  thoroughly  investigates  their  atmospheric  transport  pathways.

The mission in Antarctica, as part of the CHASE project, took place from 14/11 to 23/12 in 2017. The objectives of the project were achieved, even exceeded, since the group (N. Mattielli – Université Libre de Bruxelles, Labo. G-Time; A. Mangold - Royal Meteorological Institute of Belgium; and Ch. Walgraeve from Ghent University) installed five sampling sites themselves from the plateau to the coast via the PEA (Princess Elizabeth Antarctica) station along a ±200km transect. Each site is equipped with at least three passive samplers (for the analysis of suspended dust organic components and trace elements, metallic or not). At each site, snow bottles were also collected (for the analysis of trace elements and isotopic compositions of deposited atmospheric particles). Moreover, with the precious contribution of the IPF (International Polar Foundation), 100m in from the station, a container has been equipped with three active pumps to collect a larger volume of dust on filters.

 

To the top of Utsteinen near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli).

To the top of Utsteinen near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)


Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - Nadine Mattielli)

 Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - copyright Nadine Mattielli)
 

More Pictures and explanations can be found on: http://www.bncar.be/

Nadine Mattielli

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.