SEGH Articles

The CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

15 January 2018
Professor Nadine Mattielli, of Universite Libre de Bruxelles, provides us with an exciting introduction to the CHASE project, including some breathtaking photographs from a recent fieldwork expedition to Antarctica.

CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

Atmospheric  composition  change  is  a  main  driver  of  present  and  near-future  climate  change  with  airborne  particles  playing  a major  role  therein.  But  the  aerosol  fluxes  and  sources  in  Antarctica  and  its  closely  associated  Southern  Ocean  are  poorly constrained, in particular the particle chemistry. Antarctica is considered the best-preserved region on Earth from anthropogenic emissions.  However,  the  impact  of  anthropogenic  airborne  particles  and  pollutants  could  be  significantly  larger  than  expected. Furthermore,  a  detailed  understanding  of  present-day  atmospheric  transport  pathways  of  particles  and  of  volatile  organic compounds (VOC) from source to deposition in Antarctica remains essential to document biogeochemical cycles and the relative importance of natural and anthropogenic compounds, which are not well constrained at the moment. Those information  are  relevant,  not  only  to  interpret  climatic  data  extracted  from  ice  cores  and  the  transport  and  deposition  of  mineral  nutrients,  but  are also essential  to better  identify  organic  micro-pollutants  in  polar  regions  and  their  potential  interactions  with  human  activities  and  health

The  research  project  CHASE  (Unravelling Particle Chemistry in Dronning Maud Land (Antarctica): from atmosphere to surface snow)  funded  by  BELSPO  (Belgian Science Policy)  will  provide  detailed  physical-chemical  analyses  of  both atmospheric  and  surface  snow  particles  as  well  as  of  VOCs  and  thoroughly  investigates  their  atmospheric  transport  pathways.

The mission in Antarctica, as part of the CHASE project, took place from 14/11 to 23/12 in 2017. The objectives of the project were achieved, even exceeded, since the group (N. Mattielli – Université Libre de Bruxelles, Labo. G-Time; A. Mangold - Royal Meteorological Institute of Belgium; and Ch. Walgraeve from Ghent University) installed five sampling sites themselves from the plateau to the coast via the PEA (Princess Elizabeth Antarctica) station along a ±200km transect. Each site is equipped with at least three passive samplers (for the analysis of suspended dust organic components and trace elements, metallic or not). At each site, snow bottles were also collected (for the analysis of trace elements and isotopic compositions of deposited atmospheric particles). Moreover, with the precious contribution of the IPF (International Polar Foundation), 100m in from the station, a container has been equipped with three active pumps to collect a larger volume of dust on filters.

 

To the top of Utsteinen near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli).

To the top of Utsteinen near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)


Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - Nadine Mattielli)

 Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - copyright Nadine Mattielli)
 

More Pictures and explanations can be found on: http://www.bncar.be/

Nadine Mattielli

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India 2019-07-19

    Abstract

    Island populations are rarely studied for risk of arsenic (As) poisoning. As poisoning, multimetal contamination and people’s perceptions of health risks were assessed on India’s Majuli Island, the largest inhabited river island in the world. This holistic approach illustrated the association of groundwater contamination status with consequent health risk by measuring levels of inorganic arsenic (iAs) in groundwater, borehole sediment and biological samples (hair, nails and urine). Piper and Gibbs’s plots discerned the underlying hydrogeochemical processes in the aquifer. Demographic data and qualitative factors were evaluated to assess the risks and uncertainties of exposure. The results exhibited significant enrichment of groundwater with As, Mn and Fe along with significant body burden. Maximum Hazard Index values indicated severe non-carcinogenic health impacts as well as a significantly elevated risk of cancer for both adults and children. Most (99%) of the locally affected population did not know about the adverse health impacts of metal contamination, and only 15% understood bodily ailments and health issues. Various aspects of the island environment were used to elucidate the status of contamination and future risk of disease. A projection showed adverse health outcomes rising significantly, especially among the young population of Majuli, due to overexposure to not only As but also Ba, Mn and Fe.

  • The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study 2019-07-19

    Abstract

    Agricultural soil samples were collected from the areas where edible plants had been cultivated in southern Poland. The PHE content decreased in proportion to the median value specified in brackets (mg/kg d.m.) as follows: Zn (192) > Pb (47.1) > Cr (19.6) > Cu (18.8) > Ni (9.91) > As (5.73) > Co (4.63) > Sb (0.85) > Tl (0.04) > Cd (0.03) > Hg (0.001) > Se (< LOQ). No PHE concentrations exceeded the permissible levels defined in the Polish law. The PHE solubility (extracted with CaCl2) in the total concentration ranged in the following order: Fe (3.3%) > Cd (2.50%) > Ni (0.75%) > Zn (0.48%) > Cu (0.19%) > Pb (0.10%) > Cr (0.03%). The soil contamination indices revealed moderate contamination with Zn, ranging from uncontaminated to moderately contaminated with Pb, and, practically, no contamination with other PHEs was identified. The ecological risk indices revealed that soils ranged from uncontaminated to slightly contaminated with Zn, Pb, As, Cu, and Ni. The PCA indicated natural sources of origin of Co, Cu, Hg, Sb, Zn, Cr, and Pb, as well as anthropogenic sources of origin of Cd, Ni, As, and Tl. The human health risk assessment (HHRA) for adults and children decreased in the following order of exposure pathways: ingestion > dermal contact > inhalation of soil particles. The total carcinogenic risk values for both adults and children were at the acceptable level under residential (1.62E−05 and 6.39E−05) and recreational scenario (5.41E−06 and 2.46E−05), respectively, as well as for adults in agricultural scenario (1.45E−05). The total non-carcinogenic risk values for both adults and children under residential scenario (1.63E−01 and 4.55E−01, respectively), under recreational scenario (2.88E−01 and 6.69E−01, respectively) and for adults (1.03E−01) under agricultural scenario indicated that adverse health effects were not likely to be observed. Investigated soils were fully suitable for edible plant cultivation.

  • Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps 2019-07-17

    Abstract

    Potentially harmful elements (PHEs) manganese (Mn), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) were measured in human hair/nails, staple crops and drinking water to ascertain the level of exposure to dust transference via wind and rain erosion for members of the Mugala community living near a mine waste dump in the Zambian Copperbelt. The mean PHE concentrations of hair in decreasing order were Zn (137 ± 21 mg/kg), Cu (38 ± 7 mg/kg), Mn (16 ± 2 mg/kg), Pb (4.3 ± 1.9 mg/kg), Ni (1.3 ± 0.2 mg/kg) and Cr (1.2 ± 0.2 mg/kg), Co (0.9 ± 0.2 mg/kg) and Cd (0.30 ± 0.02 mg/kg). Whilst for toenails the decreasing order of mean concentrations was Zn (172 ± 27 mg/kg), Cu (30 ± 5 mg/kg), Mn (12 ± 2 mg/kg), Pb (4.8 ± 0.5 mg/kg), Ni (1.7 ± 0.14 mg/kg) and Co (1.0 ± 0.02 mg/kg), Cr (0.6 ± 0.1 mg/kg) and Cd (0.1 ± 0.002 mg/kg). The concentration of these potentially harmful elements (PHEs) varied greatly among different age groups. The results showed that Mn, Co, Pb, Cd and Zn were above the interval values (Biolab in Nutritional and environmental medicine, Hair Mineral Analysis, London, 2012) at 0.2–2.0 mg/kg for Mn, 0.01–0.20 mg/kg for Co, < 2.00 mg/kg for Pb, < 0.10 mg/kg for Cd and 0.2–2.00 mg/kg for Zn, whilst Ni, Cu and Cr concentrations were within the normal range concentrations of < 1.40 mg/kg, 10–100 mg/kg and 0.1–1.5 mg/kg, respectively. Dietary intake of PHEs was assessed from the ingestion of vegetables grown in Mugala village, with estimated PHE intakes expressed on a daily basis calculated for Mn (255), Pb (48), Ni (149) and Cd (33) µg/kg bw/day. For these metals, DI via vegetables was above the proposed limits of the provisional tolerable daily intakes (PTDIs) (WHO in Evaluation of certain food additive and contaminants, Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives, 2011) for Mn at 70 µg/kg bw/day, Pb at 3 µg/kg bw/day, Ni and Cd 5 µg/kg bw/day and 1 µg/kg bw/day, respectively. The rest of the PHEs listed were within the PTDIs limits. Therefore, Mugala inhabitants are at imminent health risk due to lead, nickel and cadmium ingestion of vegetables and drinking water at this location.