SEGH Articles

The CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

15 January 2018
Professor Nadine Mattielli, of Universite Libre de Bruxelles, provides us with an exciting introduction to the CHASE project, including some breathtaking photographs from a recent fieldwork expedition to Antarctica.

CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

Atmospheric  composition  change  is  a  main  driver  of  present  and  near-future  climate  change  with  airborne  particles  playing  a major  role  therein.  But  the  aerosol  fluxes  and  sources  in  Antarctica  and  its  closely  associated  Southern  Ocean  are  poorly constrained, in particular the particle chemistry. Antarctica is considered the best-preserved region on Earth from anthropogenic emissions.  However,  the  impact  of  anthropogenic  airborne  particles  and  pollutants  could  be  significantly  larger  than  expected. Furthermore,  a  detailed  understanding  of  present-day  atmospheric  transport  pathways  of  particles  and  of  volatile  organic compounds (VOC) from source to deposition in Antarctica remains essential to document biogeochemical cycles and the relative importance of natural and anthropogenic compounds, which are not well constrained at the moment. Those information  are  relevant,  not  only  to  interpret  climatic  data  extracted  from  ice  cores  and  the  transport  and  deposition  of  mineral  nutrients,  but  are also essential  to better  identify  organic  micro-pollutants  in  polar  regions  and  their  potential  interactions  with  human  activities  and  health

The  research  project  CHASE  (Unravelling Particle Chemistry in Dronning Maud Land (Antarctica): from atmosphere to surface snow)  funded  by  BELSPO  (Belgian Science Policy)  will  provide  detailed  physical-chemical  analyses  of  both atmospheric  and  surface  snow  particles  as  well  as  of  VOCs  and  thoroughly  investigates  their  atmospheric  transport  pathways.

The mission in Antarctica, as part of the CHASE project, took place from 14/11 to 23/12 in 2017. The objectives of the project were achieved, even exceeded, since the group (N. Mattielli – Université Libre de Bruxelles, Labo. G-Time; A. Mangold - Royal Meteorological Institute of Belgium; and Ch. Walgraeve from Ghent University) installed five sampling sites themselves from the plateau to the coast via the PEA (Princess Elizabeth Antarctica) station along a ±200km transect. Each site is equipped with at least three passive samplers (for the analysis of suspended dust organic components and trace elements, metallic or not). At each site, snow bottles were also collected (for the analysis of trace elements and isotopic compositions of deposited atmospheric particles). Moreover, with the precious contribution of the IPF (International Polar Foundation), 100m in from the station, a container has been equipped with three active pumps to collect a larger volume of dust on filters.

 

To the top of Utsteinen near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli).

To the top of Utsteinen near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)


Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - Nadine Mattielli)

 Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - copyright Nadine Mattielli)
 

More Pictures and explanations can be found on: http://www.bncar.be/

Nadine Mattielli

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil 2018-02-22

    Abstract

    The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

  • 2017 Outstanding Reviewers 2018-02-21
  • Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia) 2018-02-13

    Abstract

    Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.