SEGH Articles

The CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

15 January 2018
Professor Nadine Mattielli, of Universite Libre de Bruxelles, provides us with an exciting introduction to the CHASE project, including some breathtaking photographs from a recent fieldwork expedition to Antarctica.

CHASE Project: Chemical composition of airborne particles and snow in East Antarctica (Dronning Maud Land)

Atmospheric  composition  change  is  a  main  driver  of  present  and  near-future  climate  change  with  airborne  particles  playing  a major  role  therein.  But  the  aerosol  fluxes  and  sources  in  Antarctica  and  its  closely  associated  Southern  Ocean  are  poorly constrained, in particular the particle chemistry. Antarctica is considered the best-preserved region on Earth from anthropogenic emissions.  However,  the  impact  of  anthropogenic  airborne  particles  and  pollutants  could  be  significantly  larger  than  expected. Furthermore,  a  detailed  understanding  of  present-day  atmospheric  transport  pathways  of  particles  and  of  volatile  organic compounds (VOC) from source to deposition in Antarctica remains essential to document biogeochemical cycles and the relative importance of natural and anthropogenic compounds, which are not well constrained at the moment. Those information  are  relevant,  not  only  to  interpret  climatic  data  extracted  from  ice  cores  and  the  transport  and  deposition  of  mineral  nutrients,  but  are also essential  to better  identify  organic  micro-pollutants  in  polar  regions  and  their  potential  interactions  with  human  activities  and  health

The  research  project  CHASE  (Unravelling Particle Chemistry in Dronning Maud Land (Antarctica): from atmosphere to surface snow)  funded  by  BELSPO  (Belgian Science Policy)  will  provide  detailed  physical-chemical  analyses  of  both atmospheric  and  surface  snow  particles  as  well  as  of  VOCs  and  thoroughly  investigates  their  atmospheric  transport  pathways.

The mission in Antarctica, as part of the CHASE project, took place from 14/11 to 23/12 in 2017. The objectives of the project were achieved, even exceeded, since the group (N. Mattielli – Université Libre de Bruxelles, Labo. G-Time; A. Mangold - Royal Meteorological Institute of Belgium; and Ch. Walgraeve from Ghent University) installed five sampling sites themselves from the plateau to the coast via the PEA (Princess Elizabeth Antarctica) station along a ±200km transect. Each site is equipped with at least three passive samplers (for the analysis of suspended dust organic components and trace elements, metallic or not). At each site, snow bottles were also collected (for the analysis of trace elements and isotopic compositions of deposited atmospheric particles). Moreover, with the precious contribution of the IPF (International Polar Foundation), 100m in from the station, a container has been equipped with three active pumps to collect a larger volume of dust on filters.

 

To the top of Utsteinen near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli).

To the top of Utsteinen near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station (NE of Antarctica - Nadine Mattielli)

The entrance of the plateau near the Princess Elisabeth Antarctica Station
(NE of Antarctica - copyright Nadine Mattielli)


Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - Nadine Mattielli)

 Campground at the coast for the CHASE research program and the glaciologist drilling program (ULB) (NE of Antarctica - copyright Nadine Mattielli)
 

More Pictures and explanations can be found on: http://www.bncar.be/

Nadine Mattielli

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Health risks and source identification of dietary exposure to indicator polychlorinated biphenyls (PCBs) in Lanzhou, China 2019-09-19

    Abstract

    Polychlorinated biphenyls (PCBs) are widely present in multiple environmental media even long after the phaseout, posing a health risk to the general population. Dietary intake is the major exposure route of PCBs; however, information is limited regarding PCBs in food that people directly consume. This study aims to measure personal exposure to indicator PCBs, evaluate the health risks, and identify their sources in a typical metropolitan city in China. Multi-day food samples were collected from 21 subjects in Lanzhou, Gansu Province, in two seasons using the duplicate plate method. Samples were extracted and analyzed for seven indicator PCBs using gas chromatography/mass spectrometry. Average daily doses (ADDs) of ∑7PCBs were estimated using Monte Carlo analysis with food intake information. Results show that PCB-118 and PCB-180 were the major congeners in food samples with average concentrations of 1.42 and 1.11 ng/g, respectively. The average (± SD) ADD of ∑7PCBs was 26.47 ± 22.10 ng/kg day among adults aged 18–69 years and displayed small variation across age groups. Comparing with the chronic RfD of 7 ng/kg day, 67% of people had their ADDs exceeding this threshold. The median cancer risk was 5.52 × 10−5, and 51% of residents had risks exceeding the action level of 10−4. The principal component analysis identified waste incineration, gasoline engine production, and leakage of #1 PCBs as the major PCBs sources. In conclusion, a large portion of Lanzhou residents has high non-cancer and cancer risks from dietary exposure to PCBs, which warrants control actions targeting these major sources.

  • Comprehensive assessment of heavy metals pollution of farmland soil and crops in Jilin Province 2019-09-18

    Abstract

    As a major agricultural province in China, it is necessary to study the content of heavy metals in farmland soil and crop in Jilin Province and to evaluate the risks to ecology and human health. This study presented the work completed on 79 soil samples, 10 rice samples, 66 maize samples and 15 soybean samples collected from Jilin Province farmland and evaluated six heavy metals (Zn, Cu, Pb, Cd, Hg and As) concentrations. The results showed that the concentrations of the six heavy metals in farmland soil and crop samples from Jilin Province basically met the soil standards and food health standards of China. The agricultural soil pollution spatial distribution was the most serious in the south of Jilin Province and the lightest in the west. The non-carcinogenic risks faced by children eating crops were higher than those of adults, but the carcinogenic risks were lower than those of adults. Both of the two health risks to adults and children from eating crops were very limited. The results would help determine the heavy metals pollution in farmland soil in Jilin Province efficiently and accurately and helped decision makers to achieve a balance between production and environmental regulation.

  • Sustainability of agricultural and wild cereals to aerotechnogenic exposure 2019-09-14

    Abstract

    In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones.