SEGH Articles

Our UK Experience

29 July 2019
By Doreen Meso and Womba Kaumba Mwanza

The British Geological Survey (BGS), a world-leading geoscience centre undertakes an extensive programme of overseas research, surveying and monitoring, including major institutional strengthening programmes in the developing world. We spent two months between May and July 2019 at the BGS, Keyworth Nottingham campus, funded through a Professional Fellowship awarded by the Commonwealth Scholarship Council UK (CSCUK). We originate from the University of Eldoret in Kenya (Doreen) and Copperbelt University in Zambia (Womba).

We were attached to the Inorganic Geochemistry team where they specialise in the analysis of inorganic substances across a wide suite of environmental materials, such as water, soil, sediment, rock and biological materials. Our training included: health and safety, sample preparation, handling and analysis, data management and quality assurance (QA). Safety in the laboratory is emphasized to safeguard personnel health and the equipment. The Inorganic geochemistry labs are well equipped with the latest equipment which made the environment very conducive for a good scientific experience.

 

We were trained in data management and quality control (QC), as the maintenance of a quality management system is vital to a laboratory undertaking research or commercial activities. The principles of QA, i.e. documentation, Standard Operating Procedures (SOP's), Quality Control samples and monitoring processes will help us improve our own systems in our laboratories.

Towards the end of our fellowship, we attended the 35th conference of the Society for Environmental Geochemistry and Health (SEGH) in Manchester from 1st-5th July 2019. We presented a poster on “Developing technical capacity for soil environmental geochemistry And health in sub-Saharan Africa: challenges and achievements”.

We were able to meet established scientists from around the world working on a diverse range of problems relating to the environment and health.  We were also able to join the SEGH Early Career Researchers group through which we hope to develop our own network with like-minded scientists facing similar challenges, albeit in different settings, as well as meet many of the African senior scientists making up the African section of SEGH. While in Manchester, we had fun sight-seeing including; visits to the Etihad Stadium (home of Manchester City FC), Old Trafford (Manchester United FC stadium) and Jodrell Bank Discovery Center (Astrophysics centre of the University of Manchester). Away from Manchester, we took time to visit some places in Nottingham, London and Oxford.

Overall, it has been a wonderful and memorable experience and we would like to thank the Commonwealth Scholarship Council UK as the funding body and the British Geological Survey as hosts, for the opportunity.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.