SEGH Articles

DustSafe Citizen Science Study: Harmful contaminants in house dust

07 June 2019
Khadija Jabeen and Jane Entwistle Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne, UK tell us about DustSafe, a global citizen-science project.

Household air pollution results in an estimated 4.25 million premature deaths globally each year (WHO, 2014), representing a significant, and growing contemporary public health challenge. The majority of these deaths are associated with fine particulate matter (PM), or ‘dust’, with PM declared a carcinogen by IARC in 2003. Exposure to PM can initiate or enhance disease in humans, yet the nature of the hazard that house dust presents remains poorly characterized from a toxicological and a source perspective (Moschet et al., 2018). As over 80% of the average day is spent in homes, workplaces and/or travel, indoor exposure to dust and its intrinsic physical, chemical and biological entities represents one of modern society’s greatest potential exposures to harmful substances (EPA,2015). Dust can penetrate deep into the lung and contain harmful agents, including metal(oids), microbes and other allergens. With reports of poor air quality regularly making headline news, the study of our indoor home biome (Fig. 1), has never been more timely or of mass popular interest and relevance.

Fig. 1 Components of the indoor biome

Fig. 1 Components of the indoor biome

House dust is an important environmental matrix due to its function as a repository of pollutants produced from various anthropogenic and biogenic processes. Such indoor dusts are a reservoir for toxic metal(oids), such as lead, cadmium and arsenic, many of which have been detected at environmentally relevant concentrations (Reis et al., 2018; Rasmussen et al., 2013), and recent studies highlight links between environmental pollutants in our house dusts and the health of children living in those homes (Kollitz et al. 2018).

Fig. 2 DustSafe citizen science promotional flyer


DustSafe is a global citizen-science project (Fig. 2) and a collaboration between a number of universities, including Northumbria University (UK), Macquarie University (Australia) and Indiana-Purdue University (USA). The aim is to provide a detailed understanding of the intrinsic characteristics and global variability of our indoor home dust biome, focusing on selected chemical, physical and biological characteristics and attendant hazards.

DustSafe needs YOU (well, actually it needs your dust)please register at the website (www.360dustanalysis.com) and send us your vacuum cleaner dust, or bring a sample along to the Society for Environmental Geochemistry’s (SEGH) 35th International Conference in Manchester this year.

Sample your vacuum cleaner today and join DustSafe (Further details of what/how to sample available on the website). Look out for us at SEGH’s 35th International Conference in July this year where will be presenting initial UK results from this exciting citizen-led initiative. Contact Khadija Jabeen for more details (Khadija.jabeen@northumbria.ac.uk).



                   Fig. 2 DustSafe citizen science promotional flyer


References

EPA 2015 https://cfpub.epa.gov/roe/chapter/air/indoorair.cfm

Kollitz et al. 2018 ES&T 52:11857-64

Moschet et al. 2018 ES&T 52:2878–87

Rasmussen et al. 2013 Sci Total Environ 443:520–529

Reis et al. 2018 Environ Sci Process Impacts 20:1210–24

WHO 2014 Burden of disease from household air pollution

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.