SEGH Articles

Enhancing Nutrient Use Efficiency: The Role of Specialty Fertilizers

13 March 2018
The International Fertilizer Association (IFA) held its Task Force and Strategic Forum Meeting in Zurich, Switzerland on Nov 13-15, 2017. The purpose of the meeting was to discuss and prepare the Fertilizer Industry for the challenges foreseen by 2030 along with a special focus on Enhancing Nutrient Use Efficiency: The Role of Specialty Fertilizers. Dr Munir Zia provides SEGH readers with a brief overview of this topic.

Nutrient Use Efficiency (NUE) is defined as yield per unit input. In agriculture this is usually related to the input of fertilizer, whereas in the scientific literature the NUE is often expressed as fresh weight or product yield per content of nutrient. Improvement of NUE is an essential pre-requisite for the expansion of crop production into marginal lands with low nutrient(s) availability. There are many forms of NUE. Four of them are commonly used (source: Hemantaranjan 2013):

1. Partial factor productivity -PFP (crop yield per unit of nutrient applied) tells us how productive the cropping system is in comparison to its nutrient input.

2. Partial nutrient budget –PNB (nutrient in harvested crop per unit of nutrient applied) tells us how much nutrient is taken out of the system in relation to the amount put in.

3. Agronomic efficiency –AE (yield increase per unit of nutrient applied) answers a more direct question: “How much productivity improvement was gained by the use of this nutrient?”

4. Recovery efficiency – RE (increase in above-ground crop uptake per unit of nutrient applied) tells us how much of the nutrient applied was taken up by the plant.

NUE in Pakistan: nitrogenous (N) and phosphatic (P) fertilizer use efficiency are only 30-60% and 15-20%, respectively. Pakistan is ranked lowest among neighboring countries for nitrogenous fertilizer use efficiency (Table 1):


Table 1: nitrogenous (N) fertilizers use efficiency



(million ha)


Mean Cereal Yield


Mean Nitrogen Rate



(kg grain/kg N)


(kg N grain/ kg fertilizer N)

















































Ref.: IPNI-2014

PFP = Partial Factor Productivity of nitrogenous fertilizer; PNB = Partial Nutrient Balance of nitrogenous fertilizer


Table 1 shows comparative nitrogenous fertilizer performance indicators. Pakistan has the lowest NUE computed as Partial Factor Productivity (PFP) - that is 21 kg of cereal grains/kg of N fertilizer. The second indicator (the Partial Nutrient Balance (PNB) - a ratio: kg N recovered/kg of N applied) is also the lowest (0.33%).

The N performance indicators for Pakistan are lowest among countries and even of world average, which suggests imbalanced application of nutrient N with special reference to phosphorus, potassium, and other micronutrient fertilizers. In case of phosphatic fertilizers, agronomic efficiency (AE) for wheat is about 9 kg /kg of applied phosphorus. Such low fertilizer use efficiencies are partially responsible for yield gaps in Pakistan.

Measures to Enhance NUE

i.        Specialty fertilizers – controlled release fertilizers

    ii.        Genetics and management practices assuring maximum economic yields

   iii.        Precision agriculture technologies to sense crop needs and improve application

   iv.        Increased use of on-farm measures evaluating nutrient use efficiency

    v.        Decision support tools applying science at the farm level


Specialty Fertilizers are customized and/or fortified fertilizers developed specifically to enhance NUE, e.g. granular fertilizer particles that help gradual release of fertilizer nutrients to match crop(s) requirements, usually over a few weeks/months (see Figure 1).

 Munir Fertilizer Granule

Figure. 1 Diffusion mechanism of controlled release of Nitrogen from fertilizer granule


Specialty fertilizers are intended to provide the following benefits:

  • INCREASE YIELD with same fertilizer dose
  • MAINTAIN YIELD with lower fertilizer dose
  • INCREASE YIELD with lower fertilizer dose


Specialty fertilizers can be grouped into three categories:

  • Slow and/or controlled release fertilizers (e.g. polymer coated urea)
  • Fortified secondary and micronutrients (e.g. chelated zinc)
  • Customized N-P-K grades; and fully water soluble grades etc. (e.g. N-P-K-S 15:15:15-10)


At present, major multinational fertilizer companies are focusing on development of controlled release fertilizers that can be subdivided into three categories:

  • Organic compounds (e.g., humate coated urea)
  • Water soluble fertilizers with a physical barrier to control the release of nutrients (e.g. polymer urea)
  • Inorganic low solubility compounds (e.g. partially acidulated rock phosphate)


Global Market of specialty fertilizers is projected to reach $20 billion by 2020. Major global players include:

Yara International (Norway)

Agrium Inc. (Canada)

The Mosaic Company (US)

Sinochem Group (China)

Sociedad Quimicay Minera S.A. (Chile)

Haifa Chemicals Ltd. (Israel)

In the US, a premium of 16-35% is charged over such specialty products. Below is a summary of coating materials used to produce Controlled Release Urea Fertilizer on a commercial scale. Until now, no breakthrough has been reported in the controlled release of phosphorus from MAP/DAP/TSP fertilizers.

Table 2: Commercial scale controlled release fertilizers and coating materials

Commercial name

Composition of coating material



Sulfur+wax + diatomaceous earth + coal tar

Tennessee Valley Authority, USA



Polyolefin + inorganic powder

Chisso Co. Kitakysya, Japan

LP30/LPS40/LPSS 100


Chisso-Asahi Fertilizer Corporation


Polymeric material

Agrium Inc. Canada


Polymeric material

Chisso-Asahi Fertilizer Corporation



Haifa Chemicals Ltd. Israel

Zn-coated urea

Zinc oxide

Indo-Gulf Fertilizers, India

Agrium PCU

Polymeric material

Agrium US Inc.

Kingenta PCU

Polymeric material

Shandong Kingenta Ecological Engineering Co. Ltd. China


In Pakistan other than Neem Coated Urea, only three commercial scale fertilizer products (Nurea - sulfur coated urea 36% N; calcium ammonium nitrate; and zinc-coated urea) fall under the category of specialty fertilizers.



Hemantaranjan. A, Physiology of Nutrition and Environmental Stresses on Crop Productivity, Scientific Publishers (2014).



Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01


    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01


    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01


    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.