SEGH Articles

Environmental Geochemistry in Greece: Opportunities and obstacles to development

28 September 2015
What are the opportunities and obstacles to development in the field of environmental geochemistry and health in Greece nowadays?

In the middle of an economic crisis that lasts over five years, Greek scientists are faced with enormous challenges as they try to remain focused on their research while coping with low career prospects and salary cuts. Although there is no easy answer, this article contains some thoughts on the burning question: What are the opportunities and obstacles to development in the field of environmental geochemistry and health in Greece nowadays?

Greece is characterised by an exceptionally interesting geological terrain. Laying at the edge of the European Continent, the Hellenic arc is geologically a very active area that provides the opportunity to observe and study a variety of earth system processes, ranging from typical manifestations of orogeny (including several types of ore deposits, active volcanoes and intense seismicity) to sensitive terrestrial, marine and coastal environments. As such, there are plenty "natural laboratories" providing opportunities to study environmental feedbacks and processes in action (e.g. http://www.nature.com/articles/srep12152). Furthermore, the long human history of Greece, combined with the lack of an Industrial Revolution legacy makes a very interesting case for studying the anthropogenic influence on the chemical environment through time. A key obstacle in the development is that despite its extremely rich natural capital, the country lags behind in regional baseline studies with respect to soil, sediment and water geochemistry, not to mention accessible health or epidemiological data. Systematic geochemical data are scarce and maps are only available for a few areas and at local scale (e.g. http://www.sciencedirect.com/science/article/pii/S0048969714003234). The Greek Geological Survey (IGME) in cooperation with earth science university departments across Greece could play a leading role in the development and publication of the much needed regional geochemical databases. There are at least 4 university departments that could contribute to this effort.

However, the task seems a particularly difficult one under the present economic situation. The economic and financial crisis has left a strong mark on research and innovation policies as it shifted the attention of government onto macroeconomic stabilisation, while research and innovation have become rather an ‘orphan’ in the highest political discussions (Izsak et al, 2013). Institutional funding, such as general university funds and operational costs for Research Organisations and Universities, has since 2009 been further reduced due to the salary cuts for researchers and academics, the cutback of other operational costs, and the restructuring of the public research sector through mergers. On top of this, insufficient funding absorption had been identified even before the crisis hit the country. Although Greek scientists have been very successful in winning funding from the FP7, being awarded more euros per researcher than almost any other European Union (EU) country, the planned reforms, spurred by the financial crisis, failed to capitalise on these successes as it was initially believed (Abbott, 2011). During the crisis in Greece the severely reduced budget of the Public Investment Programme led to the limited absorption of the Structural Funds - almost the only available resource for funding research development and innovation projects. The low R&D capacity and links between academia and industry may partially explain this outcome.

Many Greek scientists living and working in Greece today agree that the ongoing damage to Greek scientific research is not solely due to austerity measures. According to Kevin Featherstone (2015), an ex-member of Greece’s National Council for Research and Technology, political manipulation and institutional weakness are contributing to the situation. In his article he brings out the example of the open, competitive grant scheme (called Aristeia, or excellence) based on the European Research Council model introduced by the council in 2011 in order to address the dire problem of underfunded research. The scheme ran only for two rounds, during which the council had to battle against other governmental forces to maintain its EU funding and was then abandoned. Featherstone's concluding comment reads: "The council’s experience reflects the wider problems of Greece’s government: how it seeks and receives expert advice, the public status of this process and the near-impossibility of rational, stable long-term planning". The above described situation as well as pre-existing obstacles such as the low remuneration levels for researchers and limited career progression prospects compared to the offer in other Western and Northern European countries is also the root to a severe brain drain phenomenon within the research community in Greece; geosciences are not an exception in this. Brain drain nonetheless also goes beyond researchers to include for example engineers, architects, health care workers etc. who given high unemployment rates search for jobs beyond our own borders (Izsak et al, 2013).

So, one wonders if there is a way out of the vicious circle and any chance for development in the field of environmental geochemistry in Greece at the moment? A first step might be for the Greek researchers to try avoid introversion and keep alive the links with the international scientific community. SEGH has been a very successful community in making networking opportunities through its annual conferences and meetings as well as by participating in SEGH badged events. Within this frame the forthcoming event of the 14th International Conference of the Greek Geological Society, organised by the Aristotle University of Thessaloniki, Greece in 25-27 May 2016 provides an excellent opportunity for sharing expertise and to get a flavour of the current research advancements in Greece. The primary goal of the Conference is the presentation of the most recent advances in Geo- and Environmental Sciences, mainly in the Aegean Region and its surroundings, aiming at highlighting their impacts on natural resources, natural hazards, and environmental problems. A special session of the conference, entitled "Environmental Geochemistry: mobility and speciation of chemical elements in the system rock-soil-water-plant" is endorsed by SEGH. The session aims to bring together cross‐disciplinary scientists including geologists and geochemists, soil and plant scientists, engineers and environmental chemists and to provide the opportunity for exchanging knowledge and experiences from the Aegean Region and beyond, fostering future collaboration in the field of study. For more information about the conference and the submission procedures, please visit its website at www.ege2016.gr. The extended deadline for submitting papers and early registration is October 25, 2015.


by Dr Ariadne Argyraki, 

University of Athens



References

Abbott, A. (2011). Greek crisis spurs research reforms. Nature, 475, 13-14.

Featherstone, K. (2015) Greek politics stall research reforms. Nature, 518, 167.

Izsak, K., Markianidou, P., Lukach, R., Wastyn, A. (2013). The impact of the crisis on research and innovation policies. Study for the European Commission DG Research by Technopolis Group Belgium and Idea Consult.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19

    Abstract

    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17

    Abstract

    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12

    Abstract

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.