SEGH Articles

Environmental Geochemistry in Greece: Opportunities and obstacles to development

28 September 2015
What are the opportunities and obstacles to development in the field of environmental geochemistry and health in Greece nowadays?

In the middle of an economic crisis that lasts over five years, Greek scientists are faced with enormous challenges as they try to remain focused on their research while coping with low career prospects and salary cuts. Although there is no easy answer, this article contains some thoughts on the burning question: What are the opportunities and obstacles to development in the field of environmental geochemistry and health in Greece nowadays?

Greece is characterised by an exceptionally interesting geological terrain. Laying at the edge of the European Continent, the Hellenic arc is geologically a very active area that provides the opportunity to observe and study a variety of earth system processes, ranging from typical manifestations of orogeny (including several types of ore deposits, active volcanoes and intense seismicity) to sensitive terrestrial, marine and coastal environments. As such, there are plenty "natural laboratories" providing opportunities to study environmental feedbacks and processes in action (e.g. http://www.nature.com/articles/srep12152). Furthermore, the long human history of Greece, combined with the lack of an Industrial Revolution legacy makes a very interesting case for studying the anthropogenic influence on the chemical environment through time. A key obstacle in the development is that despite its extremely rich natural capital, the country lags behind in regional baseline studies with respect to soil, sediment and water geochemistry, not to mention accessible health or epidemiological data. Systematic geochemical data are scarce and maps are only available for a few areas and at local scale (e.g. http://www.sciencedirect.com/science/article/pii/S0048969714003234). The Greek Geological Survey (IGME) in cooperation with earth science university departments across Greece could play a leading role in the development and publication of the much needed regional geochemical databases. There are at least 4 university departments that could contribute to this effort.

However, the task seems a particularly difficult one under the present economic situation. The economic and financial crisis has left a strong mark on research and innovation policies as it shifted the attention of government onto macroeconomic stabilisation, while research and innovation have become rather an ‘orphan’ in the highest political discussions (Izsak et al, 2013). Institutional funding, such as general university funds and operational costs for Research Organisations and Universities, has since 2009 been further reduced due to the salary cuts for researchers and academics, the cutback of other operational costs, and the restructuring of the public research sector through mergers. On top of this, insufficient funding absorption had been identified even before the crisis hit the country. Although Greek scientists have been very successful in winning funding from the FP7, being awarded more euros per researcher than almost any other European Union (EU) country, the planned reforms, spurred by the financial crisis, failed to capitalise on these successes as it was initially believed (Abbott, 2011). During the crisis in Greece the severely reduced budget of the Public Investment Programme led to the limited absorption of the Structural Funds - almost the only available resource for funding research development and innovation projects. The low R&D capacity and links between academia and industry may partially explain this outcome.

Many Greek scientists living and working in Greece today agree that the ongoing damage to Greek scientific research is not solely due to austerity measures. According to Kevin Featherstone (2015), an ex-member of Greece’s National Council for Research and Technology, political manipulation and institutional weakness are contributing to the situation. In his article he brings out the example of the open, competitive grant scheme (called Aristeia, or excellence) based on the European Research Council model introduced by the council in 2011 in order to address the dire problem of underfunded research. The scheme ran only for two rounds, during which the council had to battle against other governmental forces to maintain its EU funding and was then abandoned. Featherstone's concluding comment reads: "The council’s experience reflects the wider problems of Greece’s government: how it seeks and receives expert advice, the public status of this process and the near-impossibility of rational, stable long-term planning". The above described situation as well as pre-existing obstacles such as the low remuneration levels for researchers and limited career progression prospects compared to the offer in other Western and Northern European countries is also the root to a severe brain drain phenomenon within the research community in Greece; geosciences are not an exception in this. Brain drain nonetheless also goes beyond researchers to include for example engineers, architects, health care workers etc. who given high unemployment rates search for jobs beyond our own borders (Izsak et al, 2013).

So, one wonders if there is a way out of the vicious circle and any chance for development in the field of environmental geochemistry in Greece at the moment? A first step might be for the Greek researchers to try avoid introversion and keep alive the links with the international scientific community. SEGH has been a very successful community in making networking opportunities through its annual conferences and meetings as well as by participating in SEGH badged events. Within this frame the forthcoming event of the 14th International Conference of the Greek Geological Society, organised by the Aristotle University of Thessaloniki, Greece in 25-27 May 2016 provides an excellent opportunity for sharing expertise and to get a flavour of the current research advancements in Greece. The primary goal of the Conference is the presentation of the most recent advances in Geo- and Environmental Sciences, mainly in the Aegean Region and its surroundings, aiming at highlighting their impacts on natural resources, natural hazards, and environmental problems. A special session of the conference, entitled "Environmental Geochemistry: mobility and speciation of chemical elements in the system rock-soil-water-plant" is endorsed by SEGH. The session aims to bring together cross‐disciplinary scientists including geologists and geochemists, soil and plant scientists, engineers and environmental chemists and to provide the opportunity for exchanging knowledge and experiences from the Aegean Region and beyond, fostering future collaboration in the field of study. For more information about the conference and the submission procedures, please visit its website at www.ege2016.gr. The extended deadline for submitting papers and early registration is October 25, 2015.


by Dr Ariadne Argyraki, 

University of Athens



References

Abbott, A. (2011). Greek crisis spurs research reforms. Nature, 475, 13-14.

Featherstone, K. (2015) Greek politics stall research reforms. Nature, 518, 167.

Izsak, K., Markianidou, P., Lukach, R., Wastyn, A. (2013). The impact of the crisis on research and innovation policies. Study for the European Commission DG Research by Technopolis Group Belgium and Idea Consult.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.