SEGH Articles

Environmental Geochemistry in Greece: Opportunities and obstacles to development

28 September 2015
What are the opportunities and obstacles to development in the field of environmental geochemistry and health in Greece nowadays?

In the middle of an economic crisis that lasts over five years, Greek scientists are faced with enormous challenges as they try to remain focused on their research while coping with low career prospects and salary cuts. Although there is no easy answer, this article contains some thoughts on the burning question: What are the opportunities and obstacles to development in the field of environmental geochemistry and health in Greece nowadays?

Greece is characterised by an exceptionally interesting geological terrain. Laying at the edge of the European Continent, the Hellenic arc is geologically a very active area that provides the opportunity to observe and study a variety of earth system processes, ranging from typical manifestations of orogeny (including several types of ore deposits, active volcanoes and intense seismicity) to sensitive terrestrial, marine and coastal environments. As such, there are plenty "natural laboratories" providing opportunities to study environmental feedbacks and processes in action (e.g. http://www.nature.com/articles/srep12152). Furthermore, the long human history of Greece, combined with the lack of an Industrial Revolution legacy makes a very interesting case for studying the anthropogenic influence on the chemical environment through time. A key obstacle in the development is that despite its extremely rich natural capital, the country lags behind in regional baseline studies with respect to soil, sediment and water geochemistry, not to mention accessible health or epidemiological data. Systematic geochemical data are scarce and maps are only available for a few areas and at local scale (e.g. http://www.sciencedirect.com/science/article/pii/S0048969714003234). The Greek Geological Survey (IGME) in cooperation with earth science university departments across Greece could play a leading role in the development and publication of the much needed regional geochemical databases. There are at least 4 university departments that could contribute to this effort.

However, the task seems a particularly difficult one under the present economic situation. The economic and financial crisis has left a strong mark on research and innovation policies as it shifted the attention of government onto macroeconomic stabilisation, while research and innovation have become rather an ‘orphan’ in the highest political discussions (Izsak et al, 2013). Institutional funding, such as general university funds and operational costs for Research Organisations and Universities, has since 2009 been further reduced due to the salary cuts for researchers and academics, the cutback of other operational costs, and the restructuring of the public research sector through mergers. On top of this, insufficient funding absorption had been identified even before the crisis hit the country. Although Greek scientists have been very successful in winning funding from the FP7, being awarded more euros per researcher than almost any other European Union (EU) country, the planned reforms, spurred by the financial crisis, failed to capitalise on these successes as it was initially believed (Abbott, 2011). During the crisis in Greece the severely reduced budget of the Public Investment Programme led to the limited absorption of the Structural Funds - almost the only available resource for funding research development and innovation projects. The low R&D capacity and links between academia and industry may partially explain this outcome.

Many Greek scientists living and working in Greece today agree that the ongoing damage to Greek scientific research is not solely due to austerity measures. According to Kevin Featherstone (2015), an ex-member of Greece’s National Council for Research and Technology, political manipulation and institutional weakness are contributing to the situation. In his article he brings out the example of the open, competitive grant scheme (called Aristeia, or excellence) based on the European Research Council model introduced by the council in 2011 in order to address the dire problem of underfunded research. The scheme ran only for two rounds, during which the council had to battle against other governmental forces to maintain its EU funding and was then abandoned. Featherstone's concluding comment reads: "The council’s experience reflects the wider problems of Greece’s government: how it seeks and receives expert advice, the public status of this process and the near-impossibility of rational, stable long-term planning". The above described situation as well as pre-existing obstacles such as the low remuneration levels for researchers and limited career progression prospects compared to the offer in other Western and Northern European countries is also the root to a severe brain drain phenomenon within the research community in Greece; geosciences are not an exception in this. Brain drain nonetheless also goes beyond researchers to include for example engineers, architects, health care workers etc. who given high unemployment rates search for jobs beyond our own borders (Izsak et al, 2013).

So, one wonders if there is a way out of the vicious circle and any chance for development in the field of environmental geochemistry in Greece at the moment? A first step might be for the Greek researchers to try avoid introversion and keep alive the links with the international scientific community. SEGH has been a very successful community in making networking opportunities through its annual conferences and meetings as well as by participating in SEGH badged events. Within this frame the forthcoming event of the 14th International Conference of the Greek Geological Society, organised by the Aristotle University of Thessaloniki, Greece in 25-27 May 2016 provides an excellent opportunity for sharing expertise and to get a flavour of the current research advancements in Greece. The primary goal of the Conference is the presentation of the most recent advances in Geo- and Environmental Sciences, mainly in the Aegean Region and its surroundings, aiming at highlighting their impacts on natural resources, natural hazards, and environmental problems. A special session of the conference, entitled "Environmental Geochemistry: mobility and speciation of chemical elements in the system rock-soil-water-plant" is endorsed by SEGH. The session aims to bring together cross‐disciplinary scientists including geologists and geochemists, soil and plant scientists, engineers and environmental chemists and to provide the opportunity for exchanging knowledge and experiences from the Aegean Region and beyond, fostering future collaboration in the field of study. For more information about the conference and the submission procedures, please visit its website at www.ege2016.gr. The extended deadline for submitting papers and early registration is October 25, 2015.


by Dr Ariadne Argyraki, 

University of Athens



References

Abbott, A. (2011). Greek crisis spurs research reforms. Nature, 475, 13-14.

Featherstone, K. (2015) Greek politics stall research reforms. Nature, 518, 167.

Izsak, K., Markianidou, P., Lukach, R., Wastyn, A. (2013). The impact of the crisis on research and innovation policies. Study for the European Commission DG Research by Technopolis Group Belgium and Idea Consult.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.