SEGH Articles

Fate of smelter dusts in soils

14 October 2016
Winner of the best poster prize at the SEGH meeting in Brussels. Alice Jarosikova, PhD student from Charles University in Prague, describes her research on fate of smelter-derived dust particles in soils.

Areas in the vicinity of metal smelters are inevitably exposed to metal(loid)-bearing particulates, which are emitted and dispersed in the environmental compartments. Especially surrounding soils represent an important sink for the most of these anthropogenic emissions.

 

1. Dust emitted from the copper smelter

The main objective of our study is to identify the fate of smelter dusts when deposited in soils as well as to clarify subsequent dynamics of smelter-related contaminants in the soil systems, which can interact with water and biota. We use a long-term in situ experimental approach, where polyamide bags filled with smelter dusts are placed for incubation into different depths of soil profiles. Our current 4-year in situ experiment has been initiated in October 2013 in four contrasting soil types and under different vegetation covers using the methodology described by Ettler et al. (2012). We have compared the weathering rates of smelter dusts in the following soils: neutral-to-alkaline Chernozem developed on loess (grass cover), neutral-to-slightly acidic Cambisol (grass cover), and acidic Cambisols developed under the beech and spruce forests. Our study materials are (i) arsenic rich fly ash (composed mostly of arsenolite, As2O3, galena, PbS and gypsum, CaSO4·2H2O) and (ii) copper slag (enriched in Cu, Zn and Pb). We collect experimental bags each 6 months and soil columns are vertically sampled (each 5 cm of depth) using physical rings and when possible, soil pore water is collected using Rhizon samplers. We perform mineralogical analysis on smelter dusts (to identify changes in phase composition), supplemented with bulk chemistry of dusts and soil samples coupled to As speciation analysis in soil pore waters and extracts.

 

2. Soil sampling after the smelter dust incubation using physical rings

Despite the fact that our field experiment is just in the middle and data collection is still in progress, we find that fly ash particles are highly reactive in soil systems and their dissolution is increasing over time. Arsenic leaching associated with the highest fly ash dissolution was the most significant in soil developed under the beech forest mainly due to specific seepage conditions leading to more rapid flush regime (higher moisture than for other soil types). Observation under the scanning electron microscopy (SEM) indicated that the fly ash incubated in soil under the beech was the most weathered with etched arsenolite surfaces and secondary formation of a complex metal-bearing arsenate phase.

Field experimental studies are always more difficult than laboratory investigations, because a number of parameters cannot be fully controlled. However, they are more suitable for understanding complex processes in real-life scenarios. We are looking forward to the next sampling campaign in October 2016 J

Alice Jarošíková

PhD candidate at Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Czech Republic

Reference:

Ettler, V., Mihaljevič, M., Šebek, O., Grygar, T., Klementová, M., 2012. Experimental in situ transformation of Pb smelter fly ash in acidic soils. Environ. Sci. Technol. 46, 10539-10548.

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fertilizer usage and cadmium in soils, crops and food 2018-06-23

    Abstract

    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\) , \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  • Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments 2018-06-23

    Abstract

    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  • Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons 2018-06-22

    Abstract

    Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.