SEGH Articles

Fate of smelter dusts in soils

14 October 2016
Winner of the best poster prize at the SEGH meeting in Brussels. Alice Jarosikova, PhD student from Charles University in Prague, describes her research on fate of smelter-derived dust particles in soils.

Areas in the vicinity of metal smelters are inevitably exposed to metal(loid)-bearing particulates, which are emitted and dispersed in the environmental compartments. Especially surrounding soils represent an important sink for the most of these anthropogenic emissions.

 

1. Dust emitted from the copper smelter

The main objective of our study is to identify the fate of smelter dusts when deposited in soils as well as to clarify subsequent dynamics of smelter-related contaminants in the soil systems, which can interact with water and biota. We use a long-term in situ experimental approach, where polyamide bags filled with smelter dusts are placed for incubation into different depths of soil profiles. Our current 4-year in situ experiment has been initiated in October 2013 in four contrasting soil types and under different vegetation covers using the methodology described by Ettler et al. (2012). We have compared the weathering rates of smelter dusts in the following soils: neutral-to-alkaline Chernozem developed on loess (grass cover), neutral-to-slightly acidic Cambisol (grass cover), and acidic Cambisols developed under the beech and spruce forests. Our study materials are (i) arsenic rich fly ash (composed mostly of arsenolite, As2O3, galena, PbS and gypsum, CaSO4·2H2O) and (ii) copper slag (enriched in Cu, Zn and Pb). We collect experimental bags each 6 months and soil columns are vertically sampled (each 5 cm of depth) using physical rings and when possible, soil pore water is collected using Rhizon samplers. We perform mineralogical analysis on smelter dusts (to identify changes in phase composition), supplemented with bulk chemistry of dusts and soil samples coupled to As speciation analysis in soil pore waters and extracts.

 

2. Soil sampling after the smelter dust incubation using physical rings

Despite the fact that our field experiment is just in the middle and data collection is still in progress, we find that fly ash particles are highly reactive in soil systems and their dissolution is increasing over time. Arsenic leaching associated with the highest fly ash dissolution was the most significant in soil developed under the beech forest mainly due to specific seepage conditions leading to more rapid flush regime (higher moisture than for other soil types). Observation under the scanning electron microscopy (SEM) indicated that the fly ash incubated in soil under the beech was the most weathered with etched arsenolite surfaces and secondary formation of a complex metal-bearing arsenate phase.

Field experimental studies are always more difficult than laboratory investigations, because a number of parameters cannot be fully controlled. However, they are more suitable for understanding complex processes in real-life scenarios. We are looking forward to the next sampling campaign in October 2016 J

Alice Jarošíková

PhD candidate at Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Czech Republic

Reference:

Ettler, V., Mihaljevič, M., Šebek, O., Grygar, T., Klementová, M., 2012. Experimental in situ transformation of Pb smelter fly ash in acidic soils. Environ. Sci. Technol. 46, 10539-10548.

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.