SEGH Articles

Fate of smelter dusts in soils

14 October 2016
Winner of the best poster prize at the SEGH meeting in Brussels. Alice Jarosikova, PhD student from Charles University in Prague, describes her research on fate of smelter-derived dust particles in soils.

Areas in the vicinity of metal smelters are inevitably exposed to metal(loid)-bearing particulates, which are emitted and dispersed in the environmental compartments. Especially surrounding soils represent an important sink for the most of these anthropogenic emissions.


1. Dust emitted from the copper smelter

The main objective of our study is to identify the fate of smelter dusts when deposited in soils as well as to clarify subsequent dynamics of smelter-related contaminants in the soil systems, which can interact with water and biota. We use a long-term in situ experimental approach, where polyamide bags filled with smelter dusts are placed for incubation into different depths of soil profiles. Our current 4-year in situ experiment has been initiated in October 2013 in four contrasting soil types and under different vegetation covers using the methodology described by Ettler et al. (2012). We have compared the weathering rates of smelter dusts in the following soils: neutral-to-alkaline Chernozem developed on loess (grass cover), neutral-to-slightly acidic Cambisol (grass cover), and acidic Cambisols developed under the beech and spruce forests. Our study materials are (i) arsenic rich fly ash (composed mostly of arsenolite, As2O3, galena, PbS and gypsum, CaSO4·2H2O) and (ii) copper slag (enriched in Cu, Zn and Pb). We collect experimental bags each 6 months and soil columns are vertically sampled (each 5 cm of depth) using physical rings and when possible, soil pore water is collected using Rhizon samplers. We perform mineralogical analysis on smelter dusts (to identify changes in phase composition), supplemented with bulk chemistry of dusts and soil samples coupled to As speciation analysis in soil pore waters and extracts.


2. Soil sampling after the smelter dust incubation using physical rings

Despite the fact that our field experiment is just in the middle and data collection is still in progress, we find that fly ash particles are highly reactive in soil systems and their dissolution is increasing over time. Arsenic leaching associated with the highest fly ash dissolution was the most significant in soil developed under the beech forest mainly due to specific seepage conditions leading to more rapid flush regime (higher moisture than for other soil types). Observation under the scanning electron microscopy (SEM) indicated that the fly ash incubated in soil under the beech was the most weathered with etched arsenolite surfaces and secondary formation of a complex metal-bearing arsenate phase.

Field experimental studies are always more difficult than laboratory investigations, because a number of parameters cannot be fully controlled. However, they are more suitable for understanding complex processes in real-life scenarios. We are looking forward to the next sampling campaign in October 2016 J

Alice Jarošíková

PhD candidate at Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Czech Republic


Ettler, V., Mihaljevič, M., Šebek, O., Grygar, T., Klementová, M., 2012. Experimental in situ transformation of Pb smelter fly ash in acidic soils. Environ. Sci. Technol. 46, 10539-10548.


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01


    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01


    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01


    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.