SEGH Articles

Geochemistry in Africa

26 January 2017
Read about VicFalls 2018 and fieldwork in the Copperbelt

Michael Watts and Elliott Hamilton returned to Africa to undertake two main tasks; (1) find a conference venue for the Society for Environmental Geochemistry 2018 international conference to be hosted in Victoria Falls, and (2) undertake fieldwork in the Zambian copperbelt as part of the Royal Society-DFID project (Royal Society-DFID project).

We met up with Dr Godfrey Sakala (Zambian Agriculture Research Institute) and Professor Florence Mtambanengwe (University of Zimbabwe) in Victoria Falls and viewed venues for hosting 150-200 people.  The location is ideally suited, with ample accommodation, conference facilities, transport connections, activities, is safe to walk around and of course the spectacle of Victoria Falls. The Falls are a must see and a gentle introduction to Africa for the uninitiated, with many National Parks close by in Zimbabwe, Zambia and Botswana.  A video was filmed to begin the promotion of the conference and signpost SEGH 2018 VicFalls which will appear on  http://segh.net/events/  shortly.

We moved onto Zambia with Dr Sakala and headed up to Kitwe in the Copperbelt to join Prof. Maseka from the Copperbelt University to follow up on previous field collections in Mugala village where field characterisation identified specific plots for experimental trials to investigate the influence of soil management strategies, such as organic incorporation, liming, low tillage (Conservation Agriculture) on the uptake of metals deposited through dust onto agricultural soils from nearby mine tailings.  Elliott Hamilton will explain more in a follow-up blog about his PhD and some of the findings so far.  Belinda Kaninga, one of our Royal Society-DFID PhD students has set out her first season field experiments as identified by the site characterisation and will bring the resultant soil and crop samples to BGS for analysis next May. 

Both Elliott and Belinda are using the same location for experimental trials, with Elliott focussing on the control parameters for Chromium (Cr) soil-to-crop transfer employing elemental speciation and isotope dilution for pot experiments using soil samples collected on this visit across the range of Cr concentrations and soil pH identified. These experiments will be undertaken at Sutton Bonington campus (University of Nottingham).  The processing of samples back in ZARI also allowed us to work with lab staff, review training needs and preparations for our upcoming purchase of Microwave-Plasma Atomic Emission Spectrometers in each of Malawi, Zambia and Zimbabwe. Meanwhile, Belinda is investigating a broad panel of metals (Pb, Cu, Zn, Cd, Mn, Al, Ni) and the application of specific Conservation Agriculture methodologies and potential influence on the availability of metals for soil-to-plant uptake.  Belinda has conducted pot trials at the ZARI research station in Lusaka, but as mentioned, recently set up her field plots in collaboration with the village chief and local farmers which will run over two growing seasons.  

A further project was initiated with Prof. Maseka and Dr Sakala to investigate the potential exposure to metals from dust inhalation from the Mugala mine tailings in the nearby village, comparing pathways of exposure from environmental samples through to biological samples from a biomonitoring collection (urine, blood).  The focus of the project will be a two-year MSc project undertaken by Lukundo Nakaona, in collaboration with the CBU Department for Environmental and Agricultural Sciences and Medical School, ZARI and BGS-UoN (CEG).  There are many other possibilities for environmental-health exposure and food security studies with our close partners at ZARI, CBU and UNZA (University of Zambia).  In particular, scope for GCRF proposals to provide capacity strengthening in technical capability to cement the strong scientific activities of our partners both in Zambia, the wider Royal Society-DFID network in Zimbabwe and Malawi and with other partners in Kenya and Tanzania.

By Michael Watts, Elliott Hamilton, Belinda Kaninga, Kenneth Maseka and Godfrey Sakala

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.