SEGH Articles

Geochemistry in Africa

26 January 2017
Read about VicFalls 2018 and fieldwork in the Copperbelt

Michael Watts and Elliott Hamilton returned to Africa to undertake two main tasks; (1) find a conference venue for the Society for Environmental Geochemistry 2018 international conference to be hosted in Victoria Falls, and (2) undertake fieldwork in the Zambian copperbelt as part of the Royal Society-DFID project (Royal Society-DFID project).

We met up with Dr Godfrey Sakala (Zambian Agriculture Research Institute) and Professor Florence Mtambanengwe (University of Zimbabwe) in Victoria Falls and viewed venues for hosting 150-200 people.  The location is ideally suited, with ample accommodation, conference facilities, transport connections, activities, is safe to walk around and of course the spectacle of Victoria Falls. The Falls are a must see and a gentle introduction to Africa for the uninitiated, with many National Parks close by in Zimbabwe, Zambia and Botswana.  A video was filmed to begin the promotion of the conference and signpost SEGH 2018 VicFalls which will appear on  shortly.

We moved onto Zambia with Dr Sakala and headed up to Kitwe in the Copperbelt to join Prof. Maseka from the Copperbelt University to follow up on previous field collections in Mugala village where field characterisation identified specific plots for experimental trials to investigate the influence of soil management strategies, such as organic incorporation, liming, low tillage (Conservation Agriculture) on the uptake of metals deposited through dust onto agricultural soils from nearby mine tailings.  Elliott Hamilton will explain more in a follow-up blog about his PhD and some of the findings so far.  Belinda Kaninga, one of our Royal Society-DFID PhD students has set out her first season field experiments as identified by the site characterisation and will bring the resultant soil and crop samples to BGS for analysis next May. 

Both Elliott and Belinda are using the same location for experimental trials, with Elliott focussing on the control parameters for Chromium (Cr) soil-to-crop transfer employing elemental speciation and isotope dilution for pot experiments using soil samples collected on this visit across the range of Cr concentrations and soil pH identified. These experiments will be undertaken at Sutton Bonington campus (University of Nottingham).  The processing of samples back in ZARI also allowed us to work with lab staff, review training needs and preparations for our upcoming purchase of Microwave-Plasma Atomic Emission Spectrometers in each of Malawi, Zambia and Zimbabwe. Meanwhile, Belinda is investigating a broad panel of metals (Pb, Cu, Zn, Cd, Mn, Al, Ni) and the application of specific Conservation Agriculture methodologies and potential influence on the availability of metals for soil-to-plant uptake.  Belinda has conducted pot trials at the ZARI research station in Lusaka, but as mentioned, recently set up her field plots in collaboration with the village chief and local farmers which will run over two growing seasons.  

A further project was initiated with Prof. Maseka and Dr Sakala to investigate the potential exposure to metals from dust inhalation from the Mugala mine tailings in the nearby village, comparing pathways of exposure from environmental samples through to biological samples from a biomonitoring collection (urine, blood).  The focus of the project will be a two-year MSc project undertaken by Lukundo Nakaona, in collaboration with the CBU Department for Environmental and Agricultural Sciences and Medical School, ZARI and BGS-UoN (CEG).  There are many other possibilities for environmental-health exposure and food security studies with our close partners at ZARI, CBU and UNZA (University of Zambia).  In particular, scope for GCRF proposals to provide capacity strengthening in technical capability to cement the strong scientific activities of our partners both in Zambia, the wider Royal Society-DFID network in Zimbabwe and Malawi and with other partners in Kenya and Tanzania.

By Michael Watts, Elliott Hamilton, Belinda Kaninga, Kenneth Maseka and Godfrey Sakala

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18


    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16


    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14


    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.