SEGH Articles

Geology for Global Development: GfGD

12 December 2015
Fighting Global Poverty: Geology and the Sustainable Development Goals

I was fortunate to be invited by Joel Gill, the founder and Director of Geology for Global Development (http://www.gfgd.org/) to speak at their 3rd annual conference at the Geological Society in London entitled ‘Fighting Global Poverty: Geology and the Sustainable Development Goals’ on the 30th October 2015.

GfGD is focussed on employing geoscience skills to alleviate poverty, in particular mobilising and equipping students and early-career scientists with the skills and knowledge required to make a positive, effective and greater contribution to international development. The aims and key principles of GfGD will strike a resonance with the majority of SEGH members around the world working on geochemistry and health projects and in many cases international development projects.  We take the opportunity to ask Joel a few questions to understand the guiding principles of GfGD.

Interview with Joel Gill by Dr Michael Watts, SEGH webmaster

What are the key aims of GfGD?

GfGD works to mobilise and equip the geoscience community to prevent and relieve poverty.

Geoscientists have the potential to make a significant contribution to tackling some of the major challenges of today, including ending extreme poverty and ensuring sustainable development. Geoscience research, monitoring, innovation and engineering can drive widespread improvements to wellbeing and quality of life, in areas such as health, food and water security, infrastructure development, natural resource management and disaster risk reduction.

Effectively applying our understanding of geoscience to development projects, however, requires more than just a competent understanding of technical science. This is one essential foundation, but we also need a thorough understanding of location-specific social, cultural, economic, ethical and environmental factors

The two main strands of our work therefore are (i) to support the public in general, and particularly amongst geologists, to better understand how geology can support sustainable development and how to do this effectively, and (ii) using this knowledge to assist in the prevention and relief of poverty.

 

Figure 1: Our latest poster gives an overview of how geology can support development, and the activities that we run to mobilise and equip the community to engage in such work.

How did you come up with the idea of GfGD?

In 2009 and 2010 I was fortunate enough to be given two opportunities to travel to the Kagera Region of Tanzania. I was part of a small team evaluating a troubled small-scale water programme and advising on remediation/future projects.

On a personal level, these opportunities gave me an intensive and very practical introduction to many aspects of community-scale development, and the role of geology in such work. During these visits I observed projects where a lack of geological understanding had resulted in project failure. Small amounts of basic geoscience understanding would have put the project on a much more sustainable footing.

While a lack of geological understanding was serious, more common were projects that did include geologists, water engineers or other technical experts, but these individuals had a poor understanding of community development. There was little involvement of the local communities, little consultation about where to locate the wells and minimal efforts to help develop a community group to manage the project. 

In both situations, communities were left with water projects that were not fit-for-purpose, failing shortly after completion or only working for part of the year. Children and women had to continue walking several kilometres to collect water. Communities were forced to drink dirty and potentially very dangerous, water.

On my return to the UK I initiated GfGD to help tackle both of these challenges that I had observed on the ground – the need to increase the understanding and integration of geology into development projects, and the need to equip geologists with the skills and development theory required to ensure what they do is effective and sustainable.

Figure 2: Water collection in Kagera Region, Tanzania, at an unprotected water source.

Figure 3: Children using their school time to collect water in Kagera Region, Tanzania.


Who is involved in GfGD?

Most of our work so far has been with students and recent graduates in the United Kingdom. We have established 13 University Groups (or chapters) in the UK, and one in the Republic of Ireland, run by undergraduate and postgraduate students. Groups organise seminars, training and discussion events, all exploring the role of geology in international development. Many of these events attract engineers, geographers and other disciplines, encouraging cross-disciplinary communications. Our national and international events draw a wider range of geoscientists, from different nationalities, sectors and professional levels.

We’ve been working in partnership with other organisations since our beginning. We’ve had great support from the Geological Society of London, hosts of our past three annual conferences. We’re also grateful to the British Geological Survey, European Geosciences Union, and the YES Network, for involving us in a range of conferences and opportunities.

 

What key resources and activities do you employ to encourage young scientists to use geoscience in international development?

We believe that young geoscientists need access to both the information to support their integration of development within geoscience (and vice versa), but also practical opportunities to do this.  In order to support both we use a wide range of resource types:

  • Website: Our website has a growing collection of presentations and other contributions to our annual conferences (e.g., www.gfgd.org/conferences). Making these available allows those who can’t attend in person to benefit from the event.
  • Blog/Social Media: Our online presence includes a blog and active social media on Twitter and Facebook. These have been great tools to share relevant articles, conference sessions and other opportunities.  
  • Education Hub: Soon to be launched is an online-hub of lesson plans and discussion questions that can be used by our university groups to explore topics such as: what is international development; how do we engage with policy; and how do we communicate across cultures?
  • Conferences and Workshops: We run an annual conference in London, but also try to organise smaller events on specific topics to allow for more discussion and student contributions.

Figure 4: GfGD Annual Conference 2015, discussing the role of geology in the UN Global Goals for Sustainable Development.

  • Placements: In the past we have arranges short work experience placements for students within development organisations, and geology organisations working on development projects. These give students a preliminary understanding of how the development sector operates and how geoscience can support the development community.
  • Practical Programmes: Partnering with other organisations, we have got students involved in mini-research projects, producing and delivering teaching materials overseas, and fundraising. 


Does GfGD engage directly in international development?

Lots of our time and effort goes into training young geoscientists in the UK to directly support international development throughout their careers. As an organisation we do also support development agencies here in the UK and engage directly in some overseas projects in a variety of ways.

  • From 2013 we have been working on a project to produce country-specific natural hazard factsheets for use by development NGOs.
  • In 2014 we joined with partners in the UK, India and beyond to plan and deliver a hazards education programme in multiple schools in Ladakh, India. GfGD designed and delivered interactive classes on landslides, helping students to increase their understanding of what causes a disaster.

 

Figures 5 and 6: Hazards Education in the Himalayas. A team of British and Indian nationals were involved in a programme teaching children about landslides and other aspects of geoscience.

  • In 2014 we also launched a fundraising initiative to help strengthen resilience to volcanic hazards in Guatemala. Our aim is to help build the technical capacity of the volcanic observatories within the hazard monitoring agency.
  • Since 2011 we have advised on geological and development content of poverty-fighting and capacity-building projects.

In all of our overseas work we seek to partner with other organisations in the host country, such as universities, geological surveys, hazard monitoring agencies and NGOs.

 

The Millennium Development Goals have now been succeeded by the Sustainable Development Goals – do you consider there to be any considerable differences between the MDGs and SDGs in which Geoscience can contribute?

Within the 17 SDGs there is better recognition of the interactions between social and environmental challenges, and the need for a comprehensive, global response. The SDGs have three core aims: reducing poverty, ending inequality and ensuring environmental sustainability. There is an important emphasis on all nations taking action, not just developing nations. The shift from international development to sustainable development recognises that we share one planet and must all examine our use of natural resources, as well as issues such as urbanisation, gender equality, health, and food and water security. Given the importance placed on environmental sustainability, geoscience research, monitoring and practice has a role to play in almost all of the goals. I’d strongly encourage specific groupings within geoscience, such as geochemistry, to look at how their work can support the different goals.

Figure 7: Summary chart of the UN Global Goals for Sustainable Development (read more: https://sustainabledevelopment.un.org/topics).

Another positive contrast with the MDGs is that the SDGs also run parallel with the Sendai Framework for Disaster Risk Reduction 2015-2030 and hopefully a climate agreement to be published later this month. This cohesive approach will allow geoscientists working on aspects of natural hazards and climate change to better support efforts to tackle extreme poverty and inequality.

 

How do you see GfGD developing its role in the coming years?

Our long-term vision is that GfGD would grow to become a world-leading organisation for issues relating to geoscience and development. We are working to reshape the geoscience community to be a well-informed, positive contributor to global efforts to tackle extreme poverty and sustainable development, for the benefit of all society.

This big vision requires a lot of small steps, starting with the completion of our application to register as a formal charity with the UK Charity Commission. My fellow trustees and I are currently working on the development of a long-term strategy that will set out where we want to be in 10-15 years and how we intend to get there. Part of this strategy will be considering how we can help reshape geoscience education, research, private sector practice and engagement with civil society to better support the Global Goals for Sustainable Development. Alongside other things, we’ll be considering the expansion of our groups beyond UK academia to other countries and those in industry, increased engagement with overseas projects, and more training and summer school opportunities for students.

Over the course of 2016-7 we’ll be publishing more information on our strategy review, on our website (www.gfgd.org).

Find out more about GfGD’s work online through their website (www.gfgd.org), Facebook (www.facebook.com/gfgd.org) and Twitter (@Geo_Dev).



Joel Gill is the Founder and Director of Geology for Global Development. He is currently completing a NERC/ESRC funded PhD on characterising interacting natural hazards at King’s College London (KCL), and teaches on geohazards and disasters at both KCL and the London School of Economics. Joel advises on overseas development projects, conferences and geoeducation initiatives. He is a Fellow of the Geological Society and a member of their External Relations Committee, with a focus on international development.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.