SEGH Articles

Geology for Global Development: GfGD

12 December 2015
Fighting Global Poverty: Geology and the Sustainable Development Goals

I was fortunate to be invited by Joel Gill, the founder and Director of Geology for Global Development (http://www.gfgd.org/) to speak at their 3rd annual conference at the Geological Society in London entitled ‘Fighting Global Poverty: Geology and the Sustainable Development Goals’ on the 30th October 2015.

GfGD is focussed on employing geoscience skills to alleviate poverty, in particular mobilising and equipping students and early-career scientists with the skills and knowledge required to make a positive, effective and greater contribution to international development. The aims and key principles of GfGD will strike a resonance with the majority of SEGH members around the world working on geochemistry and health projects and in many cases international development projects.  We take the opportunity to ask Joel a few questions to understand the guiding principles of GfGD.

Interview with Joel Gill by Dr Michael Watts, SEGH webmaster

What are the key aims of GfGD?

GfGD works to mobilise and equip the geoscience community to prevent and relieve poverty.

Geoscientists have the potential to make a significant contribution to tackling some of the major challenges of today, including ending extreme poverty and ensuring sustainable development. Geoscience research, monitoring, innovation and engineering can drive widespread improvements to wellbeing and quality of life, in areas such as health, food and water security, infrastructure development, natural resource management and disaster risk reduction.

Effectively applying our understanding of geoscience to development projects, however, requires more than just a competent understanding of technical science. This is one essential foundation, but we also need a thorough understanding of location-specific social, cultural, economic, ethical and environmental factors

The two main strands of our work therefore are (i) to support the public in general, and particularly amongst geologists, to better understand how geology can support sustainable development and how to do this effectively, and (ii) using this knowledge to assist in the prevention and relief of poverty.

 

Figure 1: Our latest poster gives an overview of how geology can support development, and the activities that we run to mobilise and equip the community to engage in such work.

How did you come up with the idea of GfGD?

In 2009 and 2010 I was fortunate enough to be given two opportunities to travel to the Kagera Region of Tanzania. I was part of a small team evaluating a troubled small-scale water programme and advising on remediation/future projects.

On a personal level, these opportunities gave me an intensive and very practical introduction to many aspects of community-scale development, and the role of geology in such work. During these visits I observed projects where a lack of geological understanding had resulted in project failure. Small amounts of basic geoscience understanding would have put the project on a much more sustainable footing.

While a lack of geological understanding was serious, more common were projects that did include geologists, water engineers or other technical experts, but these individuals had a poor understanding of community development. There was little involvement of the local communities, little consultation about where to locate the wells and minimal efforts to help develop a community group to manage the project. 

In both situations, communities were left with water projects that were not fit-for-purpose, failing shortly after completion or only working for part of the year. Children and women had to continue walking several kilometres to collect water. Communities were forced to drink dirty and potentially very dangerous, water.

On my return to the UK I initiated GfGD to help tackle both of these challenges that I had observed on the ground – the need to increase the understanding and integration of geology into development projects, and the need to equip geologists with the skills and development theory required to ensure what they do is effective and sustainable.

Figure 2: Water collection in Kagera Region, Tanzania, at an unprotected water source.

Figure 3: Children using their school time to collect water in Kagera Region, Tanzania.


Who is involved in GfGD?

Most of our work so far has been with students and recent graduates in the United Kingdom. We have established 13 University Groups (or chapters) in the UK, and one in the Republic of Ireland, run by undergraduate and postgraduate students. Groups organise seminars, training and discussion events, all exploring the role of geology in international development. Many of these events attract engineers, geographers and other disciplines, encouraging cross-disciplinary communications. Our national and international events draw a wider range of geoscientists, from different nationalities, sectors and professional levels.

We’ve been working in partnership with other organisations since our beginning. We’ve had great support from the Geological Society of London, hosts of our past three annual conferences. We’re also grateful to the British Geological Survey, European Geosciences Union, and the YES Network, for involving us in a range of conferences and opportunities.

 

What key resources and activities do you employ to encourage young scientists to use geoscience in international development?

We believe that young geoscientists need access to both the information to support their integration of development within geoscience (and vice versa), but also practical opportunities to do this.  In order to support both we use a wide range of resource types:

  • Website: Our website has a growing collection of presentations and other contributions to our annual conferences (e.g., www.gfgd.org/conferences). Making these available allows those who can’t attend in person to benefit from the event.
  • Blog/Social Media: Our online presence includes a blog and active social media on Twitter and Facebook. These have been great tools to share relevant articles, conference sessions and other opportunities.  
  • Education Hub: Soon to be launched is an online-hub of lesson plans and discussion questions that can be used by our university groups to explore topics such as: what is international development; how do we engage with policy; and how do we communicate across cultures?
  • Conferences and Workshops: We run an annual conference in London, but also try to organise smaller events on specific topics to allow for more discussion and student contributions.

Figure 4: GfGD Annual Conference 2015, discussing the role of geology in the UN Global Goals for Sustainable Development.

  • Placements: In the past we have arranges short work experience placements for students within development organisations, and geology organisations working on development projects. These give students a preliminary understanding of how the development sector operates and how geoscience can support the development community.
  • Practical Programmes: Partnering with other organisations, we have got students involved in mini-research projects, producing and delivering teaching materials overseas, and fundraising. 


Does GfGD engage directly in international development?

Lots of our time and effort goes into training young geoscientists in the UK to directly support international development throughout their careers. As an organisation we do also support development agencies here in the UK and engage directly in some overseas projects in a variety of ways.

  • From 2013 we have been working on a project to produce country-specific natural hazard factsheets for use by development NGOs.
  • In 2014 we joined with partners in the UK, India and beyond to plan and deliver a hazards education programme in multiple schools in Ladakh, India. GfGD designed and delivered interactive classes on landslides, helping students to increase their understanding of what causes a disaster.

 

Figures 5 and 6: Hazards Education in the Himalayas. A team of British and Indian nationals were involved in a programme teaching children about landslides and other aspects of geoscience.

  • In 2014 we also launched a fundraising initiative to help strengthen resilience to volcanic hazards in Guatemala. Our aim is to help build the technical capacity of the volcanic observatories within the hazard monitoring agency.
  • Since 2011 we have advised on geological and development content of poverty-fighting and capacity-building projects.

In all of our overseas work we seek to partner with other organisations in the host country, such as universities, geological surveys, hazard monitoring agencies and NGOs.

 

The Millennium Development Goals have now been succeeded by the Sustainable Development Goals – do you consider there to be any considerable differences between the MDGs and SDGs in which Geoscience can contribute?

Within the 17 SDGs there is better recognition of the interactions between social and environmental challenges, and the need for a comprehensive, global response. The SDGs have three core aims: reducing poverty, ending inequality and ensuring environmental sustainability. There is an important emphasis on all nations taking action, not just developing nations. The shift from international development to sustainable development recognises that we share one planet and must all examine our use of natural resources, as well as issues such as urbanisation, gender equality, health, and food and water security. Given the importance placed on environmental sustainability, geoscience research, monitoring and practice has a role to play in almost all of the goals. I’d strongly encourage specific groupings within geoscience, such as geochemistry, to look at how their work can support the different goals.

Figure 7: Summary chart of the UN Global Goals for Sustainable Development (read more: https://sustainabledevelopment.un.org/topics).

Another positive contrast with the MDGs is that the SDGs also run parallel with the Sendai Framework for Disaster Risk Reduction 2015-2030 and hopefully a climate agreement to be published later this month. This cohesive approach will allow geoscientists working on aspects of natural hazards and climate change to better support efforts to tackle extreme poverty and inequality.

 

How do you see GfGD developing its role in the coming years?

Our long-term vision is that GfGD would grow to become a world-leading organisation for issues relating to geoscience and development. We are working to reshape the geoscience community to be a well-informed, positive contributor to global efforts to tackle extreme poverty and sustainable development, for the benefit of all society.

This big vision requires a lot of small steps, starting with the completion of our application to register as a formal charity with the UK Charity Commission. My fellow trustees and I are currently working on the development of a long-term strategy that will set out where we want to be in 10-15 years and how we intend to get there. Part of this strategy will be considering how we can help reshape geoscience education, research, private sector practice and engagement with civil society to better support the Global Goals for Sustainable Development. Alongside other things, we’ll be considering the expansion of our groups beyond UK academia to other countries and those in industry, increased engagement with overseas projects, and more training and summer school opportunities for students.

Over the course of 2016-7 we’ll be publishing more information on our strategy review, on our website (www.gfgd.org).

Find out more about GfGD’s work online through their website (www.gfgd.org), Facebook (www.facebook.com/gfgd.org) and Twitter (@Geo_Dev).



Joel Gill is the Founder and Director of Geology for Global Development. He is currently completing a NERC/ESRC funded PhD on characterising interacting natural hazards at King’s College London (KCL), and teaches on geohazards and disasters at both KCL and the London School of Economics. Joel advises on overseas development projects, conferences and geoeducation initiatives. He is a Fellow of the Geological Society and a member of their External Relations Committee, with a focus on international development.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.