SEGH Articles

The 15th International Congress of the Geological Society of Greece

18 June 2019
Ariadne Argyrak recalls the events of the 15th International Congress of the Geological Society of Greece, which included a special session entitled jointly organized by the Society for Environmental Geochemistry and Health, the IUGS Commission on Global Geochemical Baselines (CGGB) and the EuroGeoSurveys Geochemistry Expert Group

The 15th International Congress of the Geological Society of Greece -GSG 2019 was successfully held on May 22-24 2019 in Athens, Greece. The conference was hosted by the Harokopio University in an excellent venue. The International Congresses of the Geological Society of Greece are multidisciplinary earth science events, focusing on, but not limited to, the broader Aegean region and its surroundings, with the view to highlighting the contribution of geosciences to the study of natural resources, natural hazards and environment. The central theme of this year's congress was "Exploring and Protecting our Living Planet Earth". With a rich program spread in 12 general sessions and 16 special sessions, the congress attracted 723 delegates, 208 oral presentations, 184 poster presentations and 14 Keynote lectures. Conference abstracts have been authored by 1647 authors or co-authors from 36 countries.

  

SEGH presence at The 15th International Congress of the Geological Society of Greece

A special session entitled "Geochemical mapping for environmental and resource management" was jointly organized by the Society for Environmental Geochemistry and Health, the IUGS Commission on Global Geochemical Baselines (CGGB) and the EuroGeoSurveys Geochemistry Expert Group. The focus of the session was on geochemical mapping at all spatial scales for the study of the environment and the natural resources. The main objective was to provide the opportunity for young researchers to present their work and benefit from the interaction with well-established geochemistry experts. Furthermore, the session enabled mingle and osmosis between experts working on different aspects of geochemistry and provided the floor for exchanging experiences with working and interpreting big data like the GEMAS project or more locally focused surveys of rapidly changing environments such as urban areas and beyond. A total of 10 oral and 12 poster presentations have been included in the special session, most of them by young researchers. Two excellent keynotes were delivered during the session, one by Dr Philippe Negrel on GEMAS: GEOCHEMISTRY OF EUROPEAN SOIL FOR PRODUCING GOOD QUALITY FOOD and a second by Prof. Andrew Hursthouse on SOIL CONTAMINANT BASELINES IN THE MANAGEMENT OF URBAN ECOSYSTEMS. A lovely dinner with a view of the Parthenon over Greek delicacies was the social highlight of the event. 

Overall this event has been a perfect opportunity for promoting the scope of SEGH to a wide audience of young earth scientists. Hopefully, there will be opportunities for many more to follow. The conference program and the list of presentations of the special session T4S1 is accessible at https://www.gsg2019.gr/

Ariadne Argyraki, National and Kapodistrian University of Athens, Greece

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India 2019-07-19

    Abstract

    Island populations are rarely studied for risk of arsenic (As) poisoning. As poisoning, multimetal contamination and people’s perceptions of health risks were assessed on India’s Majuli Island, the largest inhabited river island in the world. This holistic approach illustrated the association of groundwater contamination status with consequent health risk by measuring levels of inorganic arsenic (iAs) in groundwater, borehole sediment and biological samples (hair, nails and urine). Piper and Gibbs’s plots discerned the underlying hydrogeochemical processes in the aquifer. Demographic data and qualitative factors were evaluated to assess the risks and uncertainties of exposure. The results exhibited significant enrichment of groundwater with As, Mn and Fe along with significant body burden. Maximum Hazard Index values indicated severe non-carcinogenic health impacts as well as a significantly elevated risk of cancer for both adults and children. Most (99%) of the locally affected population did not know about the adverse health impacts of metal contamination, and only 15% understood bodily ailments and health issues. Various aspects of the island environment were used to elucidate the status of contamination and future risk of disease. A projection showed adverse health outcomes rising significantly, especially among the young population of Majuli, due to overexposure to not only As but also Ba, Mn and Fe.

  • The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study 2019-07-19

    Abstract

    Agricultural soil samples were collected from the areas where edible plants had been cultivated in southern Poland. The PHE content decreased in proportion to the median value specified in brackets (mg/kg d.m.) as follows: Zn (192) > Pb (47.1) > Cr (19.6) > Cu (18.8) > Ni (9.91) > As (5.73) > Co (4.63) > Sb (0.85) > Tl (0.04) > Cd (0.03) > Hg (0.001) > Se (< LOQ). No PHE concentrations exceeded the permissible levels defined in the Polish law. The PHE solubility (extracted with CaCl2) in the total concentration ranged in the following order: Fe (3.3%) > Cd (2.50%) > Ni (0.75%) > Zn (0.48%) > Cu (0.19%) > Pb (0.10%) > Cr (0.03%). The soil contamination indices revealed moderate contamination with Zn, ranging from uncontaminated to moderately contaminated with Pb, and, practically, no contamination with other PHEs was identified. The ecological risk indices revealed that soils ranged from uncontaminated to slightly contaminated with Zn, Pb, As, Cu, and Ni. The PCA indicated natural sources of origin of Co, Cu, Hg, Sb, Zn, Cr, and Pb, as well as anthropogenic sources of origin of Cd, Ni, As, and Tl. The human health risk assessment (HHRA) for adults and children decreased in the following order of exposure pathways: ingestion > dermal contact > inhalation of soil particles. The total carcinogenic risk values for both adults and children were at the acceptable level under residential (1.62E−05 and 6.39E−05) and recreational scenario (5.41E−06 and 2.46E−05), respectively, as well as for adults in agricultural scenario (1.45E−05). The total non-carcinogenic risk values for both adults and children under residential scenario (1.63E−01 and 4.55E−01, respectively), under recreational scenario (2.88E−01 and 6.69E−01, respectively) and for adults (1.03E−01) under agricultural scenario indicated that adverse health effects were not likely to be observed. Investigated soils were fully suitable for edible plant cultivation.

  • Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps 2019-07-17

    Abstract

    Potentially harmful elements (PHEs) manganese (Mn), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) were measured in human hair/nails, staple crops and drinking water to ascertain the level of exposure to dust transference via wind and rain erosion for members of the Mugala community living near a mine waste dump in the Zambian Copperbelt. The mean PHE concentrations of hair in decreasing order were Zn (137 ± 21 mg/kg), Cu (38 ± 7 mg/kg), Mn (16 ± 2 mg/kg), Pb (4.3 ± 1.9 mg/kg), Ni (1.3 ± 0.2 mg/kg) and Cr (1.2 ± 0.2 mg/kg), Co (0.9 ± 0.2 mg/kg) and Cd (0.30 ± 0.02 mg/kg). Whilst for toenails the decreasing order of mean concentrations was Zn (172 ± 27 mg/kg), Cu (30 ± 5 mg/kg), Mn (12 ± 2 mg/kg), Pb (4.8 ± 0.5 mg/kg), Ni (1.7 ± 0.14 mg/kg) and Co (1.0 ± 0.02 mg/kg), Cr (0.6 ± 0.1 mg/kg) and Cd (0.1 ± 0.002 mg/kg). The concentration of these potentially harmful elements (PHEs) varied greatly among different age groups. The results showed that Mn, Co, Pb, Cd and Zn were above the interval values (Biolab in Nutritional and environmental medicine, Hair Mineral Analysis, London, 2012) at 0.2–2.0 mg/kg for Mn, 0.01–0.20 mg/kg for Co, < 2.00 mg/kg for Pb, < 0.10 mg/kg for Cd and 0.2–2.00 mg/kg for Zn, whilst Ni, Cu and Cr concentrations were within the normal range concentrations of < 1.40 mg/kg, 10–100 mg/kg and 0.1–1.5 mg/kg, respectively. Dietary intake of PHEs was assessed from the ingestion of vegetables grown in Mugala village, with estimated PHE intakes expressed on a daily basis calculated for Mn (255), Pb (48), Ni (149) and Cd (33) µg/kg bw/day. For these metals, DI via vegetables was above the proposed limits of the provisional tolerable daily intakes (PTDIs) (WHO in Evaluation of certain food additive and contaminants, Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives, 2011) for Mn at 70 µg/kg bw/day, Pb at 3 µg/kg bw/day, Ni and Cd 5 µg/kg bw/day and 1 µg/kg bw/day, respectively. The rest of the PHEs listed were within the PTDIs limits. Therefore, Mugala inhabitants are at imminent health risk due to lead, nickel and cadmium ingestion of vegetables and drinking water at this location.