SEGH Articles

Health in Impact Assessment: primer published

02 July 2017
The changes to the EIA directive as recast in April this year (2017) brings human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact from the project on human and population health.

The changes to the EIA directive (http://eur-lex.europa.eu/eli/dir/2014/52/oj)  as recast in April this year (2017) brings  human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact  from the project on human and population health.  Projects may range from major infrastructure projects, such as new railways and airport runways, waste incinerators, industrial scale agricultural activities, to applications for fracking, open cast mines, amongst others.

 

In order to move the consideration of human and population health central stage within the process of impact assessment, the Institute of Environmental Management and Assessment (IEMA) has worked with Ben Cave Associates, and the Faculty of Public Health, to produce a primer which is intended to spark discussion across all professionals. Impact assessment requires the input of many different specialists; it is hoped that all of them will become engaged in this debate.

Although Health Impact Assessment  (HIA) has been carried out successfully for many projects, evaluation of human and population health has sadly been missing from many projects. It is worth remembering that the impacts can be both positive and negative. Getting the balance right is imperative. Impacts may derive from release of contaminants during the construction phase, through to contamination of water, release of proposed use of chemicals of concern, or equally may be the health benefits of the construction of a new health care facility, with release of dust and noise during the construction phase, but with a longer term overall benefit. Likewise, the disruption and impact from construction of a railway may be negative, but a shift in mode of transport away from the car in developed nations brings about improved air quality, and in developing nations provides transport which may previously have been absent, improving quality of life, not least of which may be access to healthcare facilities, or the ability to transport perishable goods to market in a timely manner. It should not be assumed that a HIA will try to get in the way of development, but rather that it will look at appropriate outcomes.

 

Balancing the various impacts is context sensitive. The geology and geography of the land to be developed will vary.  For example, water availability, permeability of rocks, or fragility of habitats, will vary, depending upon the location of a project, as will a wide number of other considerations. Identifying these issues correctly and evaluating health impacts is imperative.

The directive also requires adherence to the principle of resource efficiency. A move away from mining for new materials for production, to a requirement for re-use of materials, helps to decrease the impact on many communities, as well as the land itself. The directive requires a move towards sustainability.

Health Impact Assessment takes into account not only the ‘hard’ environmental impacts, but also the less visible ones, such as social cohesion, engagement with hard to reach communities, loss of amenity as well as impact on employment.

The EIA directive does not explicitly ask for a full  HIA to be carried out. However, in order for meaningful evaluation of human and population health to be taken into account, engagement needs to be early, and cross sectoral, as well as competent. HIA can do this. The primer does not argue for full HIAs to be undertaken, simply that human and population health is evaluated in a timely and competent manner.

As an organisation which promotes consideration of health from many directions, the research which SEGH members undertake can often be influential in the decision –making which Impact Assessment needs to undertake. Personally, I have often quoted pieces of research which have been presented at SEGH conferences. Although HIA professionals work with a good evidence base, sometimes it is necessary to err on the side of caution. Extending our evidence base is imperative. One of the stated aims of SEGH is the sharing of knowledge. Using that knowledge wisely for the good of others is the outcome we should seek.

Although the  IEMA primer is intended to be used initially in the UK, the questions which we pose are legitimate in other countries too. (Like SEGH, IEMA is an international organisation.)  Early intervention and engagement can ensure best outcomes for all concerned, driving best practice, and improving the health outcomes of   wider communities.

 The pdf is free to download from IEMA.  (https://www.iema.net/assets/newbuild/documents/IEMA%20Primer%20on%20Health%20in%20UK%20EIA%20Doc%20V11.pdf) Hard copies are available from IEMA, but the cost of these is £25.00.

Please feel free to use this within your various communities.


By Gillian Gibson, Gibson Consulting and Training

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.