SEGH Articles

Health in Impact Assessment: primer published

02 July 2017
The changes to the EIA directive as recast in April this year (2017) brings human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact from the project on human and population health.

The changes to the EIA directive (http://eur-lex.europa.eu/eli/dir/2014/52/oj)  as recast in April this year (2017) brings  human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact  from the project on human and population health.  Projects may range from major infrastructure projects, such as new railways and airport runways, waste incinerators, industrial scale agricultural activities, to applications for fracking, open cast mines, amongst others.

 

In order to move the consideration of human and population health central stage within the process of impact assessment, the Institute of Environmental Management and Assessment (IEMA) has worked with Ben Cave Associates, and the Faculty of Public Health, to produce a primer which is intended to spark discussion across all professionals. Impact assessment requires the input of many different specialists; it is hoped that all of them will become engaged in this debate.

Although Health Impact Assessment  (HIA) has been carried out successfully for many projects, evaluation of human and population health has sadly been missing from many projects. It is worth remembering that the impacts can be both positive and negative. Getting the balance right is imperative. Impacts may derive from release of contaminants during the construction phase, through to contamination of water, release of proposed use of chemicals of concern, or equally may be the health benefits of the construction of a new health care facility, with release of dust and noise during the construction phase, but with a longer term overall benefit. Likewise, the disruption and impact from construction of a railway may be negative, but a shift in mode of transport away from the car in developed nations brings about improved air quality, and in developing nations provides transport which may previously have been absent, improving quality of life, not least of which may be access to healthcare facilities, or the ability to transport perishable goods to market in a timely manner. It should not be assumed that a HIA will try to get in the way of development, but rather that it will look at appropriate outcomes.

 

Balancing the various impacts is context sensitive. The geology and geography of the land to be developed will vary.  For example, water availability, permeability of rocks, or fragility of habitats, will vary, depending upon the location of a project, as will a wide number of other considerations. Identifying these issues correctly and evaluating health impacts is imperative.

The directive also requires adherence to the principle of resource efficiency. A move away from mining for new materials for production, to a requirement for re-use of materials, helps to decrease the impact on many communities, as well as the land itself. The directive requires a move towards sustainability.

Health Impact Assessment takes into account not only the ‘hard’ environmental impacts, but also the less visible ones, such as social cohesion, engagement with hard to reach communities, loss of amenity as well as impact on employment.

The EIA directive does not explicitly ask for a full  HIA to be carried out. However, in order for meaningful evaluation of human and population health to be taken into account, engagement needs to be early, and cross sectoral, as well as competent. HIA can do this. The primer does not argue for full HIAs to be undertaken, simply that human and population health is evaluated in a timely and competent manner.

As an organisation which promotes consideration of health from many directions, the research which SEGH members undertake can often be influential in the decision –making which Impact Assessment needs to undertake. Personally, I have often quoted pieces of research which have been presented at SEGH conferences. Although HIA professionals work with a good evidence base, sometimes it is necessary to err on the side of caution. Extending our evidence base is imperative. One of the stated aims of SEGH is the sharing of knowledge. Using that knowledge wisely for the good of others is the outcome we should seek.

Although the  IEMA primer is intended to be used initially in the UK, the questions which we pose are legitimate in other countries too. (Like SEGH, IEMA is an international organisation.)  Early intervention and engagement can ensure best outcomes for all concerned, driving best practice, and improving the health outcomes of   wider communities.

 The pdf is free to download from IEMA.  (https://www.iema.net/assets/newbuild/documents/IEMA%20Primer%20on%20Health%20in%20UK%20EIA%20Doc%20V11.pdf) Hard copies are available from IEMA, but the cost of these is £25.00.

Please feel free to use this within your various communities.


By Gillian Gibson, Gibson Consulting and Training

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.