SEGH Articles

Health in Impact Assessment: primer published

02 July 2017
The changes to the EIA directive as recast in April this year (2017) brings human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact from the project on human and population health.

The changes to the EIA directive (http://eur-lex.europa.eu/eli/dir/2014/52/oj)  as recast in April this year (2017) brings  human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact  from the project on human and population health.  Projects may range from major infrastructure projects, such as new railways and airport runways, waste incinerators, industrial scale agricultural activities, to applications for fracking, open cast mines, amongst others.

 

In order to move the consideration of human and population health central stage within the process of impact assessment, the Institute of Environmental Management and Assessment (IEMA) has worked with Ben Cave Associates, and the Faculty of Public Health, to produce a primer which is intended to spark discussion across all professionals. Impact assessment requires the input of many different specialists; it is hoped that all of them will become engaged in this debate.

Although Health Impact Assessment  (HIA) has been carried out successfully for many projects, evaluation of human and population health has sadly been missing from many projects. It is worth remembering that the impacts can be both positive and negative. Getting the balance right is imperative. Impacts may derive from release of contaminants during the construction phase, through to contamination of water, release of proposed use of chemicals of concern, or equally may be the health benefits of the construction of a new health care facility, with release of dust and noise during the construction phase, but with a longer term overall benefit. Likewise, the disruption and impact from construction of a railway may be negative, but a shift in mode of transport away from the car in developed nations brings about improved air quality, and in developing nations provides transport which may previously have been absent, improving quality of life, not least of which may be access to healthcare facilities, or the ability to transport perishable goods to market in a timely manner. It should not be assumed that a HIA will try to get in the way of development, but rather that it will look at appropriate outcomes.

 

Balancing the various impacts is context sensitive. The geology and geography of the land to be developed will vary.  For example, water availability, permeability of rocks, or fragility of habitats, will vary, depending upon the location of a project, as will a wide number of other considerations. Identifying these issues correctly and evaluating health impacts is imperative.

The directive also requires adherence to the principle of resource efficiency. A move away from mining for new materials for production, to a requirement for re-use of materials, helps to decrease the impact on many communities, as well as the land itself. The directive requires a move towards sustainability.

Health Impact Assessment takes into account not only the ‘hard’ environmental impacts, but also the less visible ones, such as social cohesion, engagement with hard to reach communities, loss of amenity as well as impact on employment.

The EIA directive does not explicitly ask for a full  HIA to be carried out. However, in order for meaningful evaluation of human and population health to be taken into account, engagement needs to be early, and cross sectoral, as well as competent. HIA can do this. The primer does not argue for full HIAs to be undertaken, simply that human and population health is evaluated in a timely and competent manner.

As an organisation which promotes consideration of health from many directions, the research which SEGH members undertake can often be influential in the decision –making which Impact Assessment needs to undertake. Personally, I have often quoted pieces of research which have been presented at SEGH conferences. Although HIA professionals work with a good evidence base, sometimes it is necessary to err on the side of caution. Extending our evidence base is imperative. One of the stated aims of SEGH is the sharing of knowledge. Using that knowledge wisely for the good of others is the outcome we should seek.

Although the  IEMA primer is intended to be used initially in the UK, the questions which we pose are legitimate in other countries too. (Like SEGH, IEMA is an international organisation.)  Early intervention and engagement can ensure best outcomes for all concerned, driving best practice, and improving the health outcomes of   wider communities.

 The pdf is free to download from IEMA.  (https://www.iema.net/assets/newbuild/documents/IEMA%20Primer%20on%20Health%20in%20UK%20EIA%20Doc%20V11.pdf) Hard copies are available from IEMA, but the cost of these is £25.00.

Please feel free to use this within your various communities.


By Gillian Gibson, Gibson Consulting and Training

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.