SEGH Articles

Health in Impact Assessment: primer published

02 July 2017
The changes to the EIA directive as recast in April this year (2017) brings human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact from the project on human and population health.

The changes to the EIA directive (http://eur-lex.europa.eu/eli/dir/2014/52/oj)  as recast in April this year (2017) brings  human health very firmly into consideration. Any project which is subject to EIA (Environmental Impact assessment) is required to evaluate the impact  from the project on human and population health.  Projects may range from major infrastructure projects, such as new railways and airport runways, waste incinerators, industrial scale agricultural activities, to applications for fracking, open cast mines, amongst others.

 

In order to move the consideration of human and population health central stage within the process of impact assessment, the Institute of Environmental Management and Assessment (IEMA) has worked with Ben Cave Associates, and the Faculty of Public Health, to produce a primer which is intended to spark discussion across all professionals. Impact assessment requires the input of many different specialists; it is hoped that all of them will become engaged in this debate.

Although Health Impact Assessment  (HIA) has been carried out successfully for many projects, evaluation of human and population health has sadly been missing from many projects. It is worth remembering that the impacts can be both positive and negative. Getting the balance right is imperative. Impacts may derive from release of contaminants during the construction phase, through to contamination of water, release of proposed use of chemicals of concern, or equally may be the health benefits of the construction of a new health care facility, with release of dust and noise during the construction phase, but with a longer term overall benefit. Likewise, the disruption and impact from construction of a railway may be negative, but a shift in mode of transport away from the car in developed nations brings about improved air quality, and in developing nations provides transport which may previously have been absent, improving quality of life, not least of which may be access to healthcare facilities, or the ability to transport perishable goods to market in a timely manner. It should not be assumed that a HIA will try to get in the way of development, but rather that it will look at appropriate outcomes.

 

Balancing the various impacts is context sensitive. The geology and geography of the land to be developed will vary.  For example, water availability, permeability of rocks, or fragility of habitats, will vary, depending upon the location of a project, as will a wide number of other considerations. Identifying these issues correctly and evaluating health impacts is imperative.

The directive also requires adherence to the principle of resource efficiency. A move away from mining for new materials for production, to a requirement for re-use of materials, helps to decrease the impact on many communities, as well as the land itself. The directive requires a move towards sustainability.

Health Impact Assessment takes into account not only the ‘hard’ environmental impacts, but also the less visible ones, such as social cohesion, engagement with hard to reach communities, loss of amenity as well as impact on employment.

The EIA directive does not explicitly ask for a full  HIA to be carried out. However, in order for meaningful evaluation of human and population health to be taken into account, engagement needs to be early, and cross sectoral, as well as competent. HIA can do this. The primer does not argue for full HIAs to be undertaken, simply that human and population health is evaluated in a timely and competent manner.

As an organisation which promotes consideration of health from many directions, the research which SEGH members undertake can often be influential in the decision –making which Impact Assessment needs to undertake. Personally, I have often quoted pieces of research which have been presented at SEGH conferences. Although HIA professionals work with a good evidence base, sometimes it is necessary to err on the side of caution. Extending our evidence base is imperative. One of the stated aims of SEGH is the sharing of knowledge. Using that knowledge wisely for the good of others is the outcome we should seek.

Although the  IEMA primer is intended to be used initially in the UK, the questions which we pose are legitimate in other countries too. (Like SEGH, IEMA is an international organisation.)  Early intervention and engagement can ensure best outcomes for all concerned, driving best practice, and improving the health outcomes of   wider communities.

 The pdf is free to download from IEMA.  (https://www.iema.net/assets/newbuild/documents/IEMA%20Primer%20on%20Health%20in%20UK%20EIA%20Doc%20V11.pdf) Hard copies are available from IEMA, but the cost of these is £25.00.

Please feel free to use this within your various communities.


By Gillian Gibson, Gibson Consulting and Training

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment 2017-08-17

    Abstract

    Dye-based industries, particularly small and medium scale, discharge their effluents into waterways without treatment due to cost considerations. We investigated the use of biochars produced from the woody tree Gliricidia sepium at 300 °C (GBC300) and 500 °C (GBC500) in the laboratory and at 700 °C from a dendro bioenergy industry (GBC700), to evaluate their potential for sorption of crystal violet (CV) dye. Experiments were conducted to assess the effect of pH reaction time and CV loading on the adsorption process. The equilibrium adsorption capacity was higher with GBC700 (7.9 mg g−1) than GBC500 (4.9 mg g−1) and GBC300 (4.4 mg g−1), at pH 8. The CV sorption process was dependent on the pH, surface area and pore volume of biochar (GBC). Both Freundlich and Hill isotherm models fitted best to the equilibrium isotherm data suggesting cooperative interactions via physisorption and chemisorption mechanisms for CV sorption. The highest Hill sorption capacity of 125.5 mg g−1 was given by GBC700 at pH 8. Kinetic data followed the pseudo-second-order model, suggesting that the sorption process is more inclined toward the chemisorption mechanism. Pore diffusion, ππ electron donor–acceptor interaction and H-bonding were postulated to be involved in physisorption, whereas electrostatic interactions of protonated amine group of CV and negatively charged GBC surface led to a chemisorption type of adsorption. Overall, GBC produced as a by-product of the dendro industry could be a promising remedy for CV removal from an aqueous environment.

  • Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline 2017-08-11

    Abstract

    A comprehensive investigation was conducted in order to assess the levels of PAHs, their input prediction and potential risks to bacterial abundance and human health along Gujarat coastline. A total of 40 sediment samples were collected at quarterly intervals within a year from two contaminated sites—Alang-Sosiya Shipbreaking Yard (ASSBRY) and Navlakhi Port (NAV), situated at Gulf of Khambhat and Gulf of Kutch, respectively. The concentration of ΣPAHs ranged from 408.00 to 54240.45 ng g−1 dw, indicating heavy pollution of PAHs at both the contaminated sites. Furthermore, isomeric ratios and principal component analysis have revealed that inputs of PAHs at both contaminated sites were mixed-pyrogenic and petrogenic. Pearson co-relation test and regression analysis have disclosed Nap, Acel and Phe as major predictors for bacterial abundance at both contaminated sites. Significantly, cancer risk assessment of the PAHs has been exercised based on incremental lifetime cancer risks. Overall, index of cancer risk of PAHs for ASSBRY and NAV ranged from 4.11 × 10−6–2.11 × 10−5 and 9.08 × 10−6–4.50 × 10−3 indicating higher cancer risk at NAV compared to ASSBRY. The present findings provide baseline information that may help in developing advanced bioremediation and bioleaching strategies to minimize biological risk.

  • Error propagation in spatial modeling of public health data: a simulation approach using pediatric blood lead level data for Syracuse, New York 2017-08-08

    Abstract

    Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.