SEGH Articles

Health Protection: Principles and practice

14 October 2016
Do you struggle with understanding how to respond to the human health implications of environmental contamination? Dr Alex Stewart, a medical board member of SEGH, is an editor and contributing author of a new text covering the public health response.
Do you struggle with understanding how to respond to the human health implications of environmental contamination? Dr Alex Stewart, a medical board member of SEGH, is an editor and contributing author of a new text covering the public health response (known as health protection) to such situations, as well as to emergencies and incidents of infectious diseases.
 
  • The text comprehensively covers health protection with relevance to practitioners working in every area of the field, whether in public health or environmental sciences or other professions.
  • There are detailed descriptions with practical examples of how to respond to rapidly changing emergencies and complex and chronic environmental hazards and situations.
  • Guidance is provided on the practice of health protection through case studies and scenarios; each one is a realistic insight into health protection situations.
  • Uniquely, the book includes quick reference checklists (SIMCARDs) which provide a hands-on way of dealing with and providing public health advice on different health protection situations (acute & chronic), through concise, practically-focussed crib sheets of essential information and tasks covering a broad range of health protection topics: ideal for use in the field or even exam revision.
  • The textbook is relevant for non-specialists such as environmental scientists, as well as public health and health protection specialists. For non-specialists, and those without a medical background, the first four chapters give the grounding necessary to use the remainder of the book in a practical way.
 
Health Protection: Principles and practice is the first textbook in health protection to address all three domains within the field — environmental public health; emergency preparedness, resilience and response (EPRR); and communicable disease control — in a comprehensive and integrated manner. Written by leading practitioners in the field, the book is rooted in a practice-led, all-hazards approach, which allows for easy real-world application of the topics discussed.
 
The chapters are arranged in six sections:
1 In-depth introduction to the principles of health protection
Case studies and scenarios to describe common and important issues in the practice of health protection:
2 Infectious disease
3 Emergency preparedness, resilience and response
4 Environmental public health
5 Health protection tools (epidemiology, statistics, infection control, immunisation, disease surveillance, audit and service improvement)
6 Evidence about new and emerging issues, including environmental issues and disasters.
 
The book includes more than 100 checklists (SIMCARDs), covering the three domains of health protection. Written from first-hand experience of managing such issues, these provide practical, stand-alone quick reference guides for use in many, if not most, situations, likely or unlikely, that can and will be faced in this continually evolving field.
 
Both the topical content of Health Protection: Principles and practice, and the clearly described health protection principles the book provides, make it a highly relevant resource for professionals within and without public health and health protection.
 
Health Protection: Principles and practice. Edited by Samuel Ghebrehewet, Alex G. Stewart, David Baxter, Paul Shears, David Conrad, Merav Kliner. Oxford: OUP, 2016. Pp480
ISBN-10: 0198745478  ISBN-13: 978-0198745471
 
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.