SEGH Articles

Book review: Health protection, Principles and practice

02 July 2017
Τhe interface between the environment and health is a fascinating research topic and has traditionally been the central focus of SEGH. In fact it is this field that brings together geoscientists and medical and public health researchers and practitioners to address health problems caused or exacerbated by environmental hazards and natural disasters.

Edited by Ghebrehewet S, Stewart AG, Baxter D, Shears P, Conrad D, Kliner M. Oxford University Press (2016). 480 pp.

Τhe interface between the environment and health is a fascinating research topic and has traditionally been the central focus of SEGH. In fact it is this field that brings together geoscientists and medical and public health researchers and practitioners to address health problems caused or exacerbated by environmental hazards and natural disasters. However, searching for the right tools for communication between earth scientists and public health professionals can be a difficult task. "Health Protection: Principles and practice" is an excellent resource serving this scope among others. The book is written by specialists in the field of Health Protection in the UK where a multidisciplinary approach is adopted involving local health protection teams acting on both infectious diseases and environmental hazards. As such, although about one half of its chapters concerns infectious diseases, the book takes an inclusive, all-hazards approach and covers extensively environmental hazard control and emergency response to natural disasters, i.e. topics in the realm of common interest and interaction between geoscientists and health professionals.

As a non-specialist in health issues, without a medical background, I found the information presented in the first Section of the book very useful in providing the necessary knowledge basis to follow the case studies and scenarios related to health protection situations presented in the following chapters. The interest for geoscientists builds up from Section 3, where fire and flooding emergency situations are examined, and Section 4 which covers air pollution, cancer and chronic disease - all being typical issues where integration of health studies and environmental investigations is necessary. Section 5 focuses on health protection tools and builds upon well established approaches of environmental geochemistry, e.g. the source-pathway- receptor concept. The parallel presentation of key steps in the investigation and management of incidents arising from communicable disease, emergency response and environmental situations enables the reader to familiarise with the overall approach to public health risk assessment in all three domains. I also found that presentation through real-life scenarios, bullet points and "further thinking" boxes enhance comprehension and contribute to an easy to follow and enjoyable reading experience, which is also supported by up-to-date references.

The final Section of the book gazes into the future and discusses health protection under conditions of environmental, population and technological changes that are being observed and predicted. This section provides plenty food for thought and leads the way for developing new research ideas. The last chapter examines the relationship between health protection and sustainability, a societal challenge addressed through its three pillars of environment, economic development and social equity. The highlight of the book is certainly the comprehensive and succinct health protection checklists presented under the inventive acronym "SIMCARDs". These one-page summaries form the Appendix section and provide practical, quick reference guides for in-practice use as well as an excellent concise knowledge resource for the non-expert on how to identify and manage situations. Nevertheless, as the acronym itself refers to the New Media Age, it might be a good idea to make them available on line through a computer based application, forming a digital companion of a second edition of the book.

In summary, as a geoscientist I would definitely recommend "Health protection, Principles and practice" to anyone working in the interface between the environment and health, whatever their affiliation, and whether academic or practitioner. Especially, coming from a country where interaction between health professionals and environmental geoscientists is still weak, this text has the potential for becoming a valuable guide in achieving a common code for communication and lead the way towards a more integrated approach to health protection.

by Ariadne Argyraki

Associate Professor of Geochemistry

National and Kapodistrian University of Athens, Greece


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23


    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23


    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18


    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.