SEGH Articles

Book review: Health protection, Principles and practice

02 July 2017
Τhe interface between the environment and health is a fascinating research topic and has traditionally been the central focus of SEGH. In fact it is this field that brings together geoscientists and medical and public health researchers and practitioners to address health problems caused or exacerbated by environmental hazards and natural disasters.

Edited by Ghebrehewet S, Stewart AG, Baxter D, Shears P, Conrad D, Kliner M. Oxford University Press (2016). 480 pp.

Τhe interface between the environment and health is a fascinating research topic and has traditionally been the central focus of SEGH. In fact it is this field that brings together geoscientists and medical and public health researchers and practitioners to address health problems caused or exacerbated by environmental hazards and natural disasters. However, searching for the right tools for communication between earth scientists and public health professionals can be a difficult task. "Health Protection: Principles and practice" is an excellent resource serving this scope among others. The book is written by specialists in the field of Health Protection in the UK where a multidisciplinary approach is adopted involving local health protection teams acting on both infectious diseases and environmental hazards. As such, although about one half of its chapters concerns infectious diseases, the book takes an inclusive, all-hazards approach and covers extensively environmental hazard control and emergency response to natural disasters, i.e. topics in the realm of common interest and interaction between geoscientists and health professionals.

As a non-specialist in health issues, without a medical background, I found the information presented in the first Section of the book very useful in providing the necessary knowledge basis to follow the case studies and scenarios related to health protection situations presented in the following chapters. The interest for geoscientists builds up from Section 3, where fire and flooding emergency situations are examined, and Section 4 which covers air pollution, cancer and chronic disease - all being typical issues where integration of health studies and environmental investigations is necessary. Section 5 focuses on health protection tools and builds upon well established approaches of environmental geochemistry, e.g. the source-pathway- receptor concept. The parallel presentation of key steps in the investigation and management of incidents arising from communicable disease, emergency response and environmental situations enables the reader to familiarise with the overall approach to public health risk assessment in all three domains. I also found that presentation through real-life scenarios, bullet points and "further thinking" boxes enhance comprehension and contribute to an easy to follow and enjoyable reading experience, which is also supported by up-to-date references.

The final Section of the book gazes into the future and discusses health protection under conditions of environmental, population and technological changes that are being observed and predicted. This section provides plenty food for thought and leads the way for developing new research ideas. The last chapter examines the relationship between health protection and sustainability, a societal challenge addressed through its three pillars of environment, economic development and social equity. The highlight of the book is certainly the comprehensive and succinct health protection checklists presented under the inventive acronym "SIMCARDs". These one-page summaries form the Appendix section and provide practical, quick reference guides for in-practice use as well as an excellent concise knowledge resource for the non-expert on how to identify and manage situations. Nevertheless, as the acronym itself refers to the New Media Age, it might be a good idea to make them available on line through a computer based application, forming a digital companion of a second edition of the book.

In summary, as a geoscientist I would definitely recommend "Health protection, Principles and practice" to anyone working in the interface between the environment and health, whatever their affiliation, and whether academic or practitioner. Especially, coming from a country where interaction between health professionals and environmental geoscientists is still weak, this text has the potential for becoming a valuable guide in achieving a common code for communication and lead the way towards a more integrated approach to health protection.

by Ariadne Argyraki

Associate Professor of Geochemistry

National and Kapodistrian University of Athens, Greece


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of Pb, Cd and Hg soil contamination and its potential to cause cytotoxic and genotoxic effects in human cell lines (CaCo-2 and HaCaT) 2018-01-23


    Soil contamination by heavy metals is a serious global environmental problem, especially for developing countries. A large number of industrial plants, which continually pollute the environment, characterize Tuzla Canton, Bosnia and Herzegovina. The aim of this study was to assess the level of soil pollution by heavy metals and to estimate cytotoxicity and genotoxicity of soil leachates from this area. Lead (Pb), cadmium (Cd) and mercury (Hg) were analyzed by ICP-AES and AAS. Soil contamination was assessed using contamination factor, degree of contamination, geoaccumulation index and pollution load index. To determine the connection of variables and understanding their origin in soils, principal component analysis (PCA) and cluster analysis (CA) were used. The results indicate that Cd and Hg originated from natural and anthropogenic activities, while Pb is of anthropogenic origin. For toxicity evaluation, CaCo-2 and HaCaT cells were used. PrestoBlue assay was used for cytotoxicity testing, and γH2A.X for genotoxicity evaluation. Concerning cytotoxicity, Cd and Hg had a positive correlation with cytotoxicity in HaCaT cells, but only Hg induced cytotoxicity in CaCo-2 cells. We also demonstrate that soil leachates contaminated by heavy metals can induce genotoxicity in both used cell lines. According to these results, combining bioassays with standard physicochemical analysis can be useful for evaluating environmental and health risks more accurately. These results are important for developing proper management strategies to decrease pollution. This is one of the first studies from this area and an important indication of soil quality in Southeast Europe.

    Graphical Abstract

  • Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China 2018-01-19


    As an accumulation of solid organic and inorganic pollutant particles on outdoor ground surfaces, road dust is an important carrier of heavy metal contaminants and can be a valuable medium for characterizing urban environmental quality. Because the dusts can be an important source of atmospheric particles and take impact on human health, the aim of this study described in detail the mineralogical characteristics, morphology, and heavy metal content of road dust from Xuanwei and Fuyuan, locations with high lung cancer incidence. Our results show that the average concentrations of heavy metals in road dust were higher than their background values. Higher concentrations of heavy metals were found in the magnetic fractions (MFs) than in the non-magnetic fractions (NMFs). Magnetic measurements revealed high magnetic susceptibility values in the road dust samples, and the dominant magnetic carrier was magnetite. The magnetic grains were predominantly pseudo-single domain, multi-domain, and coarse-grained stable single domains (coarse SSD) in size. SEM/XRD analysis identified two groups of magnetic particles: spherules and angular/aggregate particles. Hazard index (HI) values for adults exposure to road dust samples, including MF, Bulk, and NMF, in both areas were lower or close to safe levels, while HI values for childhood exposure to magnetic fractions in both areas were very close or higher than safe levels. Cancer risks from road dust exposure in both areas were in the acceptable value range.

  • Lead sorption characteristics of various chicken bone part-derived chars 2018-01-18


    Recycling food waste for beneficial use is becoming increasingly important in resource-limited economy. In this study, waste chicken bones of different parts from restaurant industry were pyrolyzed at 600 °C and evaluated for char physicochemical properties and Pb sorption characteristics. Lead adsorption isotherms by different chicken bone chars were carried out with initial Pb concentration range of 1–1000 mg L−1 at pH 5. The Pb adsorption data were better described by the Langmuir model (R2 = 0.9289–0.9937; ARE = 22.7–29.3%) than the Freundlich model (R2 = 0.8684–0.9544; ARE = 35.4–72.0%). Among the chars derived from different chicken bone parts, the tibia bone char exhibited the highest maximum Pb adsorption capacity of 263 mg g−1 followed by the pelvis (222 mg g−1), ribs (208 mg g−1), clavicle (179 mg g−1), vertebrae (159 mg g−1), and humerus (135 mg g−1). The Pb adsorption capacities were significantly and positively correlated with the surface area, phosphate release amount, and total phosphorus content of chicken bone chars (r ≥ 0.9711). On the other hand, approximately 75–88% of the adsorbed Pb on the chicken bone chars was desorbable with 0.1 M HCl, indicating their recyclability for reuse. Results demonstrated that chicken bone char could be used as an effective adsorbent for Pb removal in wastewater.