SEGH Articles

32nd International SEGH conference, Brussels 2016

17 November 2015
32nd International SEGH conference, Universite Libre de Bruxelles, Brussels, Belgium, 4th-8th July, 2016.

Dear All,

On behalf of the Organising Committee of the 32nd International SEGH conference, I would like to invite you to join us at the Universite Libre de Bruxelles, Brussels, Belgium, 4th-8th July, 2016. http://segh-brussels.sciencesconf.org

This annual conference of the Society for Environmental Geochemistry and Health provides a forum for international scientists, consultants, regulatory authorities and other practitioners (public health / environmental health) with an interest in the links between environment and health and working in the broad area of environmental geochemistry. For the 32nd SEGH we are keen to receive contributions on three core themes and three special sessions:

• Theme 1 – Dust and Aerosol: Environmental records of Anthropogenic

• Theme 2 – Isotopes and Speciation

• Theme 3 – Geochemistry and Health

• Special Session 1 – SpatioTemporal Trends of Metal Contaminants in the Atmosphere

• Special Session 2 – Nanoparticles in the Environment: Fate and Effects

• Special Session 3 – Geochemistry and Biomedical Issues

The conference venue is the city campus of Université Libre de Bruxelles, in the heart of the city of Brussels, Belgium, will offer you the opportunity to visit an amazing cultural heritage, rich in European History, to taste a fascinating cuisine (chocolates, beers, ...), and participate to the Belgian life style. The venue takes benefit of accessibilities from much of the world, and numerous good-quality affordable accommodations.

My research Lab, Laboratoire G-Time (http://gtime.ulb.ac.be/ ), will be very happy to welcome you and offer you the opportunity to visit our analytical facilities. Our research focuses on applications of radiogenic and non-traditional stable isotopes in geosciences (Environmental Geochemistry, Mantle Geodynamics and Cosmochemistry). My main research interest is dedicated to the Biogeochemistry of Metal Trace Elements in the Environment. The core of our work remains the applications of non-traditional stable isotopes (Zn, Cd, Cu, Fe) in addition to traditional radiogenic isotopes (Pb, Hf, Nd, ...), as tracers of sources and processes of global biogeochemical cycles, environmental pollution and paleo-environmental reconstruction.

Activities and Climate Changes

Tracing Transfer Processes in the Critical Zone

Young scientist contributions are especially encouraged and special awards will be given out by the SEGH for the best poster and talk.

Please save these key dates in your diary. More information will follow...

We look forward to welcoming you to Brussels in 2016.

Best Regards,

Nadine Mattielli [SEGH 2016 Chair]

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.