SEGH Articles

32nd International SEGH conference, Brussels 2016

17 November 2015
32nd International SEGH conference, Universite Libre de Bruxelles, Brussels, Belgium, 4th-8th July, 2016.

Dear All,

On behalf of the Organising Committee of the 32nd International SEGH conference, I would like to invite you to join us at the Universite Libre de Bruxelles, Brussels, Belgium, 4th-8th July, 2016. http://segh-brussels.sciencesconf.org

This annual conference of the Society for Environmental Geochemistry and Health provides a forum for international scientists, consultants, regulatory authorities and other practitioners (public health / environmental health) with an interest in the links between environment and health and working in the broad area of environmental geochemistry. For the 32nd SEGH we are keen to receive contributions on three core themes and three special sessions:

• Theme 1 – Dust and Aerosol: Environmental records of Anthropogenic

• Theme 2 – Isotopes and Speciation

• Theme 3 – Geochemistry and Health

• Special Session 1 – SpatioTemporal Trends of Metal Contaminants in the Atmosphere

• Special Session 2 – Nanoparticles in the Environment: Fate and Effects

• Special Session 3 – Geochemistry and Biomedical Issues

The conference venue is the city campus of Université Libre de Bruxelles, in the heart of the city of Brussels, Belgium, will offer you the opportunity to visit an amazing cultural heritage, rich in European History, to taste a fascinating cuisine (chocolates, beers, ...), and participate to the Belgian life style. The venue takes benefit of accessibilities from much of the world, and numerous good-quality affordable accommodations.

My research Lab, Laboratoire G-Time (http://gtime.ulb.ac.be/ ), will be very happy to welcome you and offer you the opportunity to visit our analytical facilities. Our research focuses on applications of radiogenic and non-traditional stable isotopes in geosciences (Environmental Geochemistry, Mantle Geodynamics and Cosmochemistry). My main research interest is dedicated to the Biogeochemistry of Metal Trace Elements in the Environment. The core of our work remains the applications of non-traditional stable isotopes (Zn, Cd, Cu, Fe) in addition to traditional radiogenic isotopes (Pb, Hf, Nd, ...), as tracers of sources and processes of global biogeochemical cycles, environmental pollution and paleo-environmental reconstruction.

Activities and Climate Changes

Tracing Transfer Processes in the Critical Zone

Young scientist contributions are especially encouraged and special awards will be given out by the SEGH for the best poster and talk.

Please save these key dates in your diary. More information will follow...

We look forward to welcoming you to Brussels in 2016.

Best Regards,

Nadine Mattielli [SEGH 2016 Chair]

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fertilizer usage and cadmium in soils, crops and food 2018-06-23

    Abstract

    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\) , \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  • Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments 2018-06-23

    Abstract

    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  • Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons 2018-06-22

    Abstract

    Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.