SEGH Articles

Long distance electron transport in the seafloor

21 July 2016
At the SEGH 32nd International Conference recently in Brussels, Sebastiaan Van de Velde won the best prize for PhD student oral presentation. Here he tells us a little about his research.

 

 

I started my PhD project with Prof. Filip Meysman and Prof. Yue Gao (Department of Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Belgium) in October 2013, after completing my bachelor’s degree in Chemistry and master’s in Environmental Chemistry at the Vrije Universiteit Brussel (VUB, Brussels, Belgium). My PhD research is funded by the Flanders FWO foundation (‘FWO Aspirant’ grant).

 

The discovery of electrogenic sulphur oxidation (e-SOx) in marine sediments has implied a revolution in the field of geochemistry (Nielsen et al., 2010). In this newly discovered redox pathway, the reduction of oxygen was shown to be coupled to the oxidation of sulphide via direct electron transfer over spatial scales of several centimetres (so-called Long Distance Electron Transport). Two years later, long filamentous bacteria, known as cable bacteria, were identified as the drivers of this process (Pfeffer et al., 2012). These bacteria form chains of more than 10,000 individual cells that cooperate to mediate the Long Distance Electron Transport. These chains extend vertically through the sediment with the bottom cells of the cable bacterium (the cells in the anoxic part of the sediment) taking electrons from sulphide oxidation, and transferring them to the cells in the oxic zone, where oxygen is reduced. This process of electrogenic sulphur oxidation allows cable bacteria to bypass the classical redox sequence in the seafloor and gain an advantage over other bacteria that need direct contact between sulphide and oxygen molecules. 

 

The decoupling of redox reactions strongly affects the pH in the sediment, by forming an alkaline peak (pH > 8) near the sediment-water interface (corresponding to the reduction of oxygen) and generating an acidic zone below (corresponding to the oxidation of sulphide). This low pH leads to the dissolution of acid-sensitive minerals (iron sulphides and carbonates), which in its turn drives the geochemical cycling of several important elements, such as iron and calcium (Risgaard-Petersen et al., 2012).

 


Long Distance Electron Transport in marine sediments forms the topic of my PhD. My project specifically focuses on the impact of electrogenic sulphur oxidation on the geochemical cycling in coastal sediments, with special attention to trace elements (arsenic, cobalt, molybdenum etc.).  This problem is approached through a combination of field sampling campaigns, laboratory experiments, as well as theoretical modelling. Cable bacteria have been discovered to be widespread across the globe, and in varying habitat types. Numerous field campaigns to identify their whereabouts and to document the geochemical cycling have been conducted. Current field sites for my project include the Belgian Coastal Zone (Belgium), Lake Grevelingen (The Netherlands), East Gotland Basin (Sweden) and Blakeney salt marshes (UK).

 

Apart from Long Distance Electron Transport, I am also interested in other important processes affecting marine sediment geochemistry, both natural (e.g. bioturbation) as well as anthropogenic (e.g. dredging, bottom trawling).

The photographs show sampling is shown in the Belgian Coastal Zone on board the RV Simon Stevin.

More information can be found at my personal webpage: http://sevdevel.webs.com/ or the homepage of the cable bacteria project: http://www.microbial-electricity.eu/

 

by Sebastiaan Van de Velde, PhD Student, Department Analytical, Environmental and Geochemistry, VUB - Vrije Universiteit Brussels

 


 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis 2019-12-10

    Abstract

    This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM–EDX. The high level and significant variation of PM10 (162.2 µg m−3) and PM2.5 (83.9 µg m−3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.

  • Integration of remote sensing data and in situ measurements to monitor the water quality of the Ismailia Canal, Nile Delta, Egypt 2019-12-10

    Abstract

    The Ismailia Canal is one of the most important tributaries of the River Nile in Egypt. It is threatened by extinction from several sources of pollution, in addition to the intersection and nearness of the canal path with the Bilbayes drain and the effluent from the two largest conventional wastewater treatment plants in Greater Cairo. In this study, the integration of remote sensing and geospatial information system techniques is carried out to enhance the contribution of satellite data in water quality management in the Ismailia Canal. A Landsat-8 operational land imager image dated 2018 was used to detect the land use and land cover changes in the area of study, in addition to retrieving various spectral band ratios. Statistical correlations were applied among the extracted band ratios and the measured in situ water quality parameters. The most appropriate spectral band ratios were extracted from the NIR band (near infrared/blue), which showed a significant correlation with eight water quality metrics (CO3, BOD5, COD, TSS, TDS, Cl, NH4, and fecal coliform bacteria). A linear regression model was then established to predict information about these important water quality parameters along Ismailia Canal. The developed models, using linear regression equations for this study, give a set of powerful decision support frameworks with statistical tools to provide comprehensive, integrated views of surface water quality information under similar circumstances.

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.