SEGH Articles

Long distance electron transport in the seafloor

21 July 2016
At the SEGH 32nd International Conference recently in Brussels, Sebastiaan Van de Velde won the best prize for PhD student oral presentation. Here he tells us a little about his research.

 

 

I started my PhD project with Prof. Filip Meysman and Prof. Yue Gao (Department of Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Belgium) in October 2013, after completing my bachelor’s degree in Chemistry and master’s in Environmental Chemistry at the Vrije Universiteit Brussel (VUB, Brussels, Belgium). My PhD research is funded by the Flanders FWO foundation (‘FWO Aspirant’ grant).

 

The discovery of electrogenic sulphur oxidation (e-SOx) in marine sediments has implied a revolution in the field of geochemistry (Nielsen et al., 2010). In this newly discovered redox pathway, the reduction of oxygen was shown to be coupled to the oxidation of sulphide via direct electron transfer over spatial scales of several centimetres (so-called Long Distance Electron Transport). Two years later, long filamentous bacteria, known as cable bacteria, were identified as the drivers of this process (Pfeffer et al., 2012). These bacteria form chains of more than 10,000 individual cells that cooperate to mediate the Long Distance Electron Transport. These chains extend vertically through the sediment with the bottom cells of the cable bacterium (the cells in the anoxic part of the sediment) taking electrons from sulphide oxidation, and transferring them to the cells in the oxic zone, where oxygen is reduced. This process of electrogenic sulphur oxidation allows cable bacteria to bypass the classical redox sequence in the seafloor and gain an advantage over other bacteria that need direct contact between sulphide and oxygen molecules. 

 

The decoupling of redox reactions strongly affects the pH in the sediment, by forming an alkaline peak (pH > 8) near the sediment-water interface (corresponding to the reduction of oxygen) and generating an acidic zone below (corresponding to the oxidation of sulphide). This low pH leads to the dissolution of acid-sensitive minerals (iron sulphides and carbonates), which in its turn drives the geochemical cycling of several important elements, such as iron and calcium (Risgaard-Petersen et al., 2012).

 


Long Distance Electron Transport in marine sediments forms the topic of my PhD. My project specifically focuses on the impact of electrogenic sulphur oxidation on the geochemical cycling in coastal sediments, with special attention to trace elements (arsenic, cobalt, molybdenum etc.).  This problem is approached through a combination of field sampling campaigns, laboratory experiments, as well as theoretical modelling. Cable bacteria have been discovered to be widespread across the globe, and in varying habitat types. Numerous field campaigns to identify their whereabouts and to document the geochemical cycling have been conducted. Current field sites for my project include the Belgian Coastal Zone (Belgium), Lake Grevelingen (The Netherlands), East Gotland Basin (Sweden) and Blakeney salt marshes (UK).

 

Apart from Long Distance Electron Transport, I am also interested in other important processes affecting marine sediment geochemistry, both natural (e.g. bioturbation) as well as anthropogenic (e.g. dredging, bottom trawling).

The photographs show sampling is shown in the Belgian Coastal Zone on board the RV Simon Stevin.

More information can be found at my personal webpage: http://sevdevel.webs.com/ or the homepage of the cable bacteria project: http://www.microbial-electricity.eu/

 

by Sebastiaan Van de Velde, PhD Student, Department Analytical, Environmental and Geochemistry, VUB - Vrije Universiteit Brussels

 


 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.