SEGH Articles

Long distance electron transport in the seafloor

21 July 2016
At the SEGH 32nd International Conference recently in Brussels, Sebastiaan Van de Velde won the best prize for PhD student oral presentation. Here he tells us a little about his research.

 

 

I started my PhD project with Prof. Filip Meysman and Prof. Yue Gao (Department of Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Belgium) in October 2013, after completing my bachelor’s degree in Chemistry and master’s in Environmental Chemistry at the Vrije Universiteit Brussel (VUB, Brussels, Belgium). My PhD research is funded by the Flanders FWO foundation (‘FWO Aspirant’ grant).

 

The discovery of electrogenic sulphur oxidation (e-SOx) in marine sediments has implied a revolution in the field of geochemistry (Nielsen et al., 2010). In this newly discovered redox pathway, the reduction of oxygen was shown to be coupled to the oxidation of sulphide via direct electron transfer over spatial scales of several centimetres (so-called Long Distance Electron Transport). Two years later, long filamentous bacteria, known as cable bacteria, were identified as the drivers of this process (Pfeffer et al., 2012). These bacteria form chains of more than 10,000 individual cells that cooperate to mediate the Long Distance Electron Transport. These chains extend vertically through the sediment with the bottom cells of the cable bacterium (the cells in the anoxic part of the sediment) taking electrons from sulphide oxidation, and transferring them to the cells in the oxic zone, where oxygen is reduced. This process of electrogenic sulphur oxidation allows cable bacteria to bypass the classical redox sequence in the seafloor and gain an advantage over other bacteria that need direct contact between sulphide and oxygen molecules. 

 

The decoupling of redox reactions strongly affects the pH in the sediment, by forming an alkaline peak (pH > 8) near the sediment-water interface (corresponding to the reduction of oxygen) and generating an acidic zone below (corresponding to the oxidation of sulphide). This low pH leads to the dissolution of acid-sensitive minerals (iron sulphides and carbonates), which in its turn drives the geochemical cycling of several important elements, such as iron and calcium (Risgaard-Petersen et al., 2012).

 


Long Distance Electron Transport in marine sediments forms the topic of my PhD. My project specifically focuses on the impact of electrogenic sulphur oxidation on the geochemical cycling in coastal sediments, with special attention to trace elements (arsenic, cobalt, molybdenum etc.).  This problem is approached through a combination of field sampling campaigns, laboratory experiments, as well as theoretical modelling. Cable bacteria have been discovered to be widespread across the globe, and in varying habitat types. Numerous field campaigns to identify their whereabouts and to document the geochemical cycling have been conducted. Current field sites for my project include the Belgian Coastal Zone (Belgium), Lake Grevelingen (The Netherlands), East Gotland Basin (Sweden) and Blakeney salt marshes (UK).

 

Apart from Long Distance Electron Transport, I am also interested in other important processes affecting marine sediment geochemistry, both natural (e.g. bioturbation) as well as anthropogenic (e.g. dredging, bottom trawling).

The photographs show sampling is shown in the Belgian Coastal Zone on board the RV Simon Stevin.

More information can be found at my personal webpage: http://sevdevel.webs.com/ or the homepage of the cable bacteria project: http://www.microbial-electricity.eu/

 

by Sebastiaan Van de Velde, PhD Student, Department Analytical, Environmental and Geochemistry, VUB - Vrije Universiteit Brussels

 


 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.