SEGH Articles

Long distance electron transport in the seafloor

21 July 2016
At the SEGH 32nd International Conference recently in Brussels, Sebastiaan Van de Velde won the best prize for PhD student oral presentation. Here he tells us a little about his research.

 

 

I started my PhD project with Prof. Filip Meysman and Prof. Yue Gao (Department of Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Belgium) in October 2013, after completing my bachelor’s degree in Chemistry and master’s in Environmental Chemistry at the Vrije Universiteit Brussel (VUB, Brussels, Belgium). My PhD research is funded by the Flanders FWO foundation (‘FWO Aspirant’ grant).

 

The discovery of electrogenic sulphur oxidation (e-SOx) in marine sediments has implied a revolution in the field of geochemistry (Nielsen et al., 2010). In this newly discovered redox pathway, the reduction of oxygen was shown to be coupled to the oxidation of sulphide via direct electron transfer over spatial scales of several centimetres (so-called Long Distance Electron Transport). Two years later, long filamentous bacteria, known as cable bacteria, were identified as the drivers of this process (Pfeffer et al., 2012). These bacteria form chains of more than 10,000 individual cells that cooperate to mediate the Long Distance Electron Transport. These chains extend vertically through the sediment with the bottom cells of the cable bacterium (the cells in the anoxic part of the sediment) taking electrons from sulphide oxidation, and transferring them to the cells in the oxic zone, where oxygen is reduced. This process of electrogenic sulphur oxidation allows cable bacteria to bypass the classical redox sequence in the seafloor and gain an advantage over other bacteria that need direct contact between sulphide and oxygen molecules. 

 

The decoupling of redox reactions strongly affects the pH in the sediment, by forming an alkaline peak (pH > 8) near the sediment-water interface (corresponding to the reduction of oxygen) and generating an acidic zone below (corresponding to the oxidation of sulphide). This low pH leads to the dissolution of acid-sensitive minerals (iron sulphides and carbonates), which in its turn drives the geochemical cycling of several important elements, such as iron and calcium (Risgaard-Petersen et al., 2012).

 


Long Distance Electron Transport in marine sediments forms the topic of my PhD. My project specifically focuses on the impact of electrogenic sulphur oxidation on the geochemical cycling in coastal sediments, with special attention to trace elements (arsenic, cobalt, molybdenum etc.).  This problem is approached through a combination of field sampling campaigns, laboratory experiments, as well as theoretical modelling. Cable bacteria have been discovered to be widespread across the globe, and in varying habitat types. Numerous field campaigns to identify their whereabouts and to document the geochemical cycling have been conducted. Current field sites for my project include the Belgian Coastal Zone (Belgium), Lake Grevelingen (The Netherlands), East Gotland Basin (Sweden) and Blakeney salt marshes (UK).

 

Apart from Long Distance Electron Transport, I am also interested in other important processes affecting marine sediment geochemistry, both natural (e.g. bioturbation) as well as anthropogenic (e.g. dredging, bottom trawling).

The photographs show sampling is shown in the Belgian Coastal Zone on board the RV Simon Stevin.

More information can be found at my personal webpage: http://sevdevel.webs.com/ or the homepage of the cable bacteria project: http://www.microbial-electricity.eu/

 

by Sebastiaan Van de Velde, PhD Student, Department Analytical, Environmental and Geochemistry, VUB - Vrije Universiteit Brussels

 


 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.