SEGH Articles

Malcolm Brown: at the heart of SEGH

03 July 2016
It was with great sadness that we heard of the passing of Malcolm Brown in April after a long battle with illness. Malcolm worked at the heart of SEGH as the Secretary of the society

 
 
It was with great sadness that we heard of the passing of Malcolm Brown in April after a long battle with illness.  Malcolm was involved with SEGH for the past 30 years and in particular worked at the heart of SEGH as the Secretary of the society for many years, initially in the European Section and latterly as Secretary to the International Committee.  In this role, he was instrumental in maintaining momentum between annual board meetings and conferences in order to take forward key decision making in the development 

of SEGH.  More recently, over the last 12-18 months, Malcolm was instrumental in applying to the UK Charities commission and, although unsuccessful, the experience contributed to his leadership in rewriting the SEGH constitution to ensure its relevance for today and the future.

Malcolm drew on his more than 30 years’ experience at the British Geological Survey (BGS) as a geologist mapping the UK and worked in the early days in the Geochemical Baseline Survey. For a number of years leading up to his retirement, Malcolm headed up the Business Development unit at BGS, working with a variety of academic, regulatory, government, industry and other societies to encourage their use of geoscientific data.  His scientific interests extended beyond “simple “ geology and  geochemistry through to linking environmental geochemistry to health issues, bringing to bear his skills in networking and promoting cross-disciplinary work, which is at the very heart of what SEGH is trying to accomplish.

Malcolm and his wife Anthea have together been at the heart of SEGH for many years, with Anthea acting as membership secretary.  They have both unselfishly, even after retirement, contributed significantly to SEGH through their tireless efforts in the organisation of administration and management activities, as well as support to the European conferences.  Their constant presence has provided continuity through a ‘corporate memory’, quietly steering SEGH through the regular changes of Presidents and Regional Chairs, riding out the sometimes strong differences of opinion and viewpoints with utmost diplomacy, making significant contributions to the defusing of tensions and the production of satisfying outcomes.  Malcolm has been described by many on the SEGH board as a true gentleman, fair, determined and dependable, keen to help others and enthusiastic in bringing people together from different science disciplines and interests, in particular encouraging ‘young blood’ to participate in the organisation of SEGH.


On behalf of the SEGH board, we express our condolences to Anthea and her family, but also our thanks for Malcolm’s contribution to the survival of SEGH over many years in what has been a competitive environment for similar Societies, but also in setting SEGH on a path of modernisation.

Michael Watts, Andrew Hursthouse and Alex Stewart

 
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Soil contamination and human health: Part 1—preface 2020-01-27
  • The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley 2020-01-27

    Abstract

    The paper presents the results of the model experiment on spring barley (Hordeum vulgare L.) grown in polluted soil. The influence of separate and combined application of wood biochar and heavy metal-tolerant bacteria on morpho-physiological, anatomical and ultrastructural parameters of H. vulgare L. has been studied. The joint application of biochar and bacteria increased the shoot length by 2.1-fold, root length by 1.7-fold, leaf length by 2.3-fold and dry weight by threefold compared to polluted variant, bringing the plant parameters to the control level. The maximal quantum yield of photosystem II decreased by 8.3% in H. vulgare L. grown in contaminated soil, whereas this decrease was less in biochar (7%), bacteria (6%) and in combined application of bacteria and biochar (5%). As for the transpiration rate, the H. vulgare L. grown in polluted soil has shown a decrease in transpiration rate by 26%. At the same time, the simultaneous application of biochar and bacteria has led to a significant improvement in the transpiration rate (14%). The H. vulgare L. also showed anatomical (integrity of epidermal, vascular bundles, parenchymal and chlorenchymal cells) and ultrastructural (chloroplasts, thylakoid system, plastoglobules, starch grains, mitochondria, peroxisomes, ribosomes, endoplasmic reticulum, vacuoles) changes, revealed by light-optical and transmission electron microscopy of leaf sections. The effects were most prominent in H. vulgare L., grown in polluted soil but gradually improved with application of biochar, bacteria and their combination. The use of biochar in combination with metal-tolerant bacteria is an efficient tool for remediation of soils, contaminated with heavy metals. The positive changes caused by the treatment can be consistently traced at all levels of plant organization.

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract