SEGH Articles

Malcolm Brown: at the heart of SEGH

03 July 2016
It was with great sadness that we heard of the passing of Malcolm Brown in April after a long battle with illness. Malcolm worked at the heart of SEGH as the Secretary of the society

It was with great sadness that we heard of the passing of Malcolm Brown in April after a long battle with illness.  Malcolm was involved with SEGH for the past 30 years and in particular worked at the heart of SEGH as the Secretary of the society for many years, initially in the European Section and latterly as Secretary to the International Committee.  In this role, he was instrumental in maintaining momentum between annual board meetings and conferences in order to take forward key decision making in the development 

of SEGH.  More recently, over the last 12-18 months, Malcolm was instrumental in applying to the UK Charities commission and, although unsuccessful, the experience contributed to his leadership in rewriting the SEGH constitution to ensure its relevance for today and the future.

Malcolm drew on his more than 30 years’ experience at the British Geological Survey (BGS) as a geologist mapping the UK and worked in the early days in the Geochemical Baseline Survey. For a number of years leading up to his retirement, Malcolm headed up the Business Development unit at BGS, working with a variety of academic, regulatory, government, industry and other societies to encourage their use of geoscientific data.  His scientific interests extended beyond “simple “ geology and  geochemistry through to linking environmental geochemistry to health issues, bringing to bear his skills in networking and promoting cross-disciplinary work, which is at the very heart of what SEGH is trying to accomplish.

Malcolm and his wife Anthea have together been at the heart of SEGH for many years, with Anthea acting as membership secretary.  They have both unselfishly, even after retirement, contributed significantly to SEGH through their tireless efforts in the organisation of administration and management activities, as well as support to the European conferences.  Their constant presence has provided continuity through a ‘corporate memory’, quietly steering SEGH through the regular changes of Presidents and Regional Chairs, riding out the sometimes strong differences of opinion and viewpoints with utmost diplomacy, making significant contributions to the defusing of tensions and the production of satisfying outcomes.  Malcolm has been described by many on the SEGH board as a true gentleman, fair, determined and dependable, keen to help others and enthusiastic in bringing people together from different science disciplines and interests, in particular encouraging ‘young blood’ to participate in the organisation of SEGH.

On behalf of the SEGH board, we express our condolences to Anthea and her family, but also our thanks for Malcolm’s contribution to the survival of SEGH over many years in what has been a competitive environment for similar Societies, but also in setting SEGH on a path of modernisation.

Michael Watts, Andrew Hursthouse and Alex Stewart

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01


    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01


    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01


    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.