SEGH Articles

Mapping Hidden Hunger in Malawi

14 February 2016
Maps for Malawi predict spatial variation in the dietary supply of seven essential elements (calcium, copper, iodine, iron, magnesium, selenium and zinc).

Edward Joy and Louise Ander describe how recently created maps of Malawi predict spatial variation in the dietary supply of seven essential elements (calcium, copper, iodine, iron, magnesium, selenium and zinc). These maps combine information on soil and crop properties, household dietary choices and socio-economic factors. This information can help to identify key controls on mineral micronutrient dietary deficiencies – also known as “hidden hunger” – and identify research priorities for the development of appropriate and feasible interventions to reduce population-wide hidden hunger.


Life in Malawi

Malawi is a land-locked country in south-east Africa. The majority of households rely on subsistence farming with typical land size ~2 ha. Average Gross National Income is just USD 308 capita-1 compared to USD 42,098 capita‑1 in the UK. In this context, the quality of diets is affected by the ability of households to grow sufficient, nutritious food, and to supplement this with purchases. Typically, households devote most of their land to the staple crop maize which is a rational strategy when the primary objective is to satisfy energy requirements. If land and other resources such as labour permit, households may also grow legumes, vegetables, fruits etc. and some grow tobacco as a cash crop.

Hunger, or fear of hunger, is a common concern for most Malawian households. Yet hidden hunger, meaning inadequate vitamin or mineral intakes, is even more widespread. For example, zinc deficiency contributes to a very high stunting rate of 48% of children in rural areas. Food insecurity is one reason why life expectancy at birth is ~55 years, similar to that in the UK 100 years ago. Better data and an improved understanding of diets and nutrition is important to inform health and agriculture policies. We matched food consumption data recorded in a recent national household survey with crop composition data refined by soil type to quantify and map dietary mineral supplies and deficiencies across Malawi.


Not only “hidden” hunger…..

Most smallholder farmers rely on manual labour and hence have active lifestyles. As part of this study, we show that energy supplies are likely to be inadequate to support active lifestyles in >50% of households. This observation is supported by the finding that as incomes increase, there is no proportional decrease in spending on food. This suggests that those lowest income households are short of essential food.


Seasonal intakes of vegetables cause fluctuation of dietary mineral supply….

Most of Malawi has one long growing (rainy) season from December to April. Subsistence farming results in a change in availability and consumption of pulses, fruits and vegetables (including the leaves of edible ‘weeds’), which are consumed more frequently at the end of the rainy season. This leads to seasonal variation in the dietary supply of essential trace elements.


River and lake fish improve dietary micronutrient supply…..

The most commonly-consumed animal product is fish, mainly sourced from Lake Malawi and Lake Chilwa. Fish consumption is greater in households close to the major lakes and this leads to greater consumption of several micronutrients, particularly calcium, selenium and zinc.

Wealthier households have healthier diets, but soil type has the greatest control over selenium supplies…..

Household wealth was negatively associated with risk of deficiency for all nutrients studied. This is due to greater consumption of foods including micronutrient-rich animal-source foods. Previous research has shown that calcareous soils in Malawi result in higher crop selenium concentrations. Here we show that the effect of soil type is more important than household wealth in providing beneficial increases in dietary selenium supply.

 

What next?

Ensuring food security in Malawi remains a huge challenge but there are possible interventions to improve dietary mineral supplies. Interventions can be successful, e.g. the national salt iodisation programme which is responsible for the majority of the dietary supply of iodine in Malawi (as with many other countries globally). There are crop breeding programmes to increase micronutrient concentrations, particularly for zinc. Selenium could be increased in crops through enriched fertilisers, as shown in experimental trials in Malawi conducted on soils with low inherent selenium availability. Fertiliser fortification is being successfully used as a national approach to increasing dietary selenium supply in Finland.

Further information

You can read our open access paper if you would like find out more, including the full set of maps we have generated for Malawi.

This work was one of the outputs of Edward’s PhD, as well as that of the ongoing PhD project of Diriba Kumssa. Dr Edward Joy was supervised by Prof. Martin Broadley, Dr Scott Young, the late Prof. Colin Black (School of Biosciences, University of Nottingham (UoN)), Dr Louise Ander, Dr Michael Watts (British Geological Survey (BGS)) and Dr Allan Chilimba (Ministry of Agriculture and Irrigation, Malawi), with PhD funding from UoN and BGS.

Edward’s PhD research is part of an ongoing programme of research in the Centre for Environmental Geochemistry (School of Biosciences, UoN and Inorganic Geochemistry, BGS) alongside our fantastic wider network of research partners in Malawi, and beyond.

Our most recent activity is the initiation of the Royal Society – Department for International Development (RS-DFID) Africa Capacity Building project “Strengthening African capacity in soil geochemistry” in Malawi, Zambia and Zimbabwe. We have recently welcomed 5 new PhD students into this 5 year project, two of whom will directly build upon outputs from Edward’s PhD, with plans for more! Edward is now working at the London School of Hygiene Tropical Medicine (LSHTM).

by Edward Joy and Louise Ander

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis 2019-12-10

    Abstract

    This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM–EDX. The high level and significant variation of PM10 (162.2 µg m−3) and PM2.5 (83.9 µg m−3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.

  • Integration of remote sensing data and in situ measurements to monitor the water quality of the Ismailia Canal, Nile Delta, Egypt 2019-12-10

    Abstract

    The Ismailia Canal is one of the most important tributaries of the River Nile in Egypt. It is threatened by extinction from several sources of pollution, in addition to the intersection and nearness of the canal path with the Bilbayes drain and the effluent from the two largest conventional wastewater treatment plants in Greater Cairo. In this study, the integration of remote sensing and geospatial information system techniques is carried out to enhance the contribution of satellite data in water quality management in the Ismailia Canal. A Landsat-8 operational land imager image dated 2018 was used to detect the land use and land cover changes in the area of study, in addition to retrieving various spectral band ratios. Statistical correlations were applied among the extracted band ratios and the measured in situ water quality parameters. The most appropriate spectral band ratios were extracted from the NIR band (near infrared/blue), which showed a significant correlation with eight water quality metrics (CO3, BOD5, COD, TSS, TDS, Cl, NH4, and fecal coliform bacteria). A linear regression model was then established to predict information about these important water quality parameters along Ismailia Canal. The developed models, using linear regression equations for this study, give a set of powerful decision support frameworks with statistical tools to provide comprehensive, integrated views of surface water quality information under similar circumstances.

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.