SEGH Articles

Mapping Hidden Hunger in Malawi

14 February 2016
Maps for Malawi predict spatial variation in the dietary supply of seven essential elements (calcium, copper, iodine, iron, magnesium, selenium and zinc).

Edward Joy and Louise Ander describe how recently created maps of Malawi predict spatial variation in the dietary supply of seven essential elements (calcium, copper, iodine, iron, magnesium, selenium and zinc). These maps combine information on soil and crop properties, household dietary choices and socio-economic factors. This information can help to identify key controls on mineral micronutrient dietary deficiencies – also known as “hidden hunger” – and identify research priorities for the development of appropriate and feasible interventions to reduce population-wide hidden hunger.


Life in Malawi

Malawi is a land-locked country in south-east Africa. The majority of households rely on subsistence farming with typical land size ~2 ha. Average Gross National Income is just USD 308 capita-1 compared to USD 42,098 capita‑1 in the UK. In this context, the quality of diets is affected by the ability of households to grow sufficient, nutritious food, and to supplement this with purchases. Typically, households devote most of their land to the staple crop maize which is a rational strategy when the primary objective is to satisfy energy requirements. If land and other resources such as labour permit, households may also grow legumes, vegetables, fruits etc. and some grow tobacco as a cash crop.

Hunger, or fear of hunger, is a common concern for most Malawian households. Yet hidden hunger, meaning inadequate vitamin or mineral intakes, is even more widespread. For example, zinc deficiency contributes to a very high stunting rate of 48% of children in rural areas. Food insecurity is one reason why life expectancy at birth is ~55 years, similar to that in the UK 100 years ago. Better data and an improved understanding of diets and nutrition is important to inform health and agriculture policies. We matched food consumption data recorded in a recent national household survey with crop composition data refined by soil type to quantify and map dietary mineral supplies and deficiencies across Malawi.


Not only “hidden” hunger…..

Most smallholder farmers rely on manual labour and hence have active lifestyles. As part of this study, we show that energy supplies are likely to be inadequate to support active lifestyles in >50% of households. This observation is supported by the finding that as incomes increase, there is no proportional decrease in spending on food. This suggests that those lowest income households are short of essential food.


Seasonal intakes of vegetables cause fluctuation of dietary mineral supply….

Most of Malawi has one long growing (rainy) season from December to April. Subsistence farming results in a change in availability and consumption of pulses, fruits and vegetables (including the leaves of edible ‘weeds’), which are consumed more frequently at the end of the rainy season. This leads to seasonal variation in the dietary supply of essential trace elements.


River and lake fish improve dietary micronutrient supply…..

The most commonly-consumed animal product is fish, mainly sourced from Lake Malawi and Lake Chilwa. Fish consumption is greater in households close to the major lakes and this leads to greater consumption of several micronutrients, particularly calcium, selenium and zinc.

Wealthier households have healthier diets, but soil type has the greatest control over selenium supplies…..

Household wealth was negatively associated with risk of deficiency for all nutrients studied. This is due to greater consumption of foods including micronutrient-rich animal-source foods. Previous research has shown that calcareous soils in Malawi result in higher crop selenium concentrations. Here we show that the effect of soil type is more important than household wealth in providing beneficial increases in dietary selenium supply.

 

What next?

Ensuring food security in Malawi remains a huge challenge but there are possible interventions to improve dietary mineral supplies. Interventions can be successful, e.g. the national salt iodisation programme which is responsible for the majority of the dietary supply of iodine in Malawi (as with many other countries globally). There are crop breeding programmes to increase micronutrient concentrations, particularly for zinc. Selenium could be increased in crops through enriched fertilisers, as shown in experimental trials in Malawi conducted on soils with low inherent selenium availability. Fertiliser fortification is being successfully used as a national approach to increasing dietary selenium supply in Finland.

Further information

You can read our open access paper if you would like find out more, including the full set of maps we have generated for Malawi.

This work was one of the outputs of Edward’s PhD, as well as that of the ongoing PhD project of Diriba Kumssa. Dr Edward Joy was supervised by Prof. Martin Broadley, Dr Scott Young, the late Prof. Colin Black (School of Biosciences, University of Nottingham (UoN)), Dr Louise Ander, Dr Michael Watts (British Geological Survey (BGS)) and Dr Allan Chilimba (Ministry of Agriculture and Irrigation, Malawi), with PhD funding from UoN and BGS.

Edward’s PhD research is part of an ongoing programme of research in the Centre for Environmental Geochemistry (School of Biosciences, UoN and Inorganic Geochemistry, BGS) alongside our fantastic wider network of research partners in Malawi, and beyond.

Our most recent activity is the initiation of the Royal Society – Department for International Development (RS-DFID) Africa Capacity Building project “Strengthening African capacity in soil geochemistry” in Malawi, Zambia and Zimbabwe. We have recently welcomed 5 new PhD students into this 5 year project, two of whom will directly build upon outputs from Edward’s PhD, with plans for more! Edward is now working at the London School of Hygiene Tropical Medicine (LSHTM).

by Edward Joy and Louise Ander

 

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.