SEGH Articles

Mapping Hidden Hunger in Malawi

14 February 2016
Maps for Malawi predict spatial variation in the dietary supply of seven essential elements (calcium, copper, iodine, iron, magnesium, selenium and zinc).

Edward Joy and Louise Ander describe how recently created maps of Malawi predict spatial variation in the dietary supply of seven essential elements (calcium, copper, iodine, iron, magnesium, selenium and zinc). These maps combine information on soil and crop properties, household dietary choices and socio-economic factors. This information can help to identify key controls on mineral micronutrient dietary deficiencies – also known as “hidden hunger” – and identify research priorities for the development of appropriate and feasible interventions to reduce population-wide hidden hunger.


Life in Malawi

Malawi is a land-locked country in south-east Africa. The majority of households rely on subsistence farming with typical land size ~2 ha. Average Gross National Income is just USD 308 capita-1 compared to USD 42,098 capita‑1 in the UK. In this context, the quality of diets is affected by the ability of households to grow sufficient, nutritious food, and to supplement this with purchases. Typically, households devote most of their land to the staple crop maize which is a rational strategy when the primary objective is to satisfy energy requirements. If land and other resources such as labour permit, households may also grow legumes, vegetables, fruits etc. and some grow tobacco as a cash crop.

Hunger, or fear of hunger, is a common concern for most Malawian households. Yet hidden hunger, meaning inadequate vitamin or mineral intakes, is even more widespread. For example, zinc deficiency contributes to a very high stunting rate of 48% of children in rural areas. Food insecurity is one reason why life expectancy at birth is ~55 years, similar to that in the UK 100 years ago. Better data and an improved understanding of diets and nutrition is important to inform health and agriculture policies. We matched food consumption data recorded in a recent national household survey with crop composition data refined by soil type to quantify and map dietary mineral supplies and deficiencies across Malawi.


Not only “hidden” hunger…..

Most smallholder farmers rely on manual labour and hence have active lifestyles. As part of this study, we show that energy supplies are likely to be inadequate to support active lifestyles in >50% of households. This observation is supported by the finding that as incomes increase, there is no proportional decrease in spending on food. This suggests that those lowest income households are short of essential food.


Seasonal intakes of vegetables cause fluctuation of dietary mineral supply….

Most of Malawi has one long growing (rainy) season from December to April. Subsistence farming results in a change in availability and consumption of pulses, fruits and vegetables (including the leaves of edible ‘weeds’), which are consumed more frequently at the end of the rainy season. This leads to seasonal variation in the dietary supply of essential trace elements.


River and lake fish improve dietary micronutrient supply…..

The most commonly-consumed animal product is fish, mainly sourced from Lake Malawi and Lake Chilwa. Fish consumption is greater in households close to the major lakes and this leads to greater consumption of several micronutrients, particularly calcium, selenium and zinc.

Wealthier households have healthier diets, but soil type has the greatest control over selenium supplies…..

Household wealth was negatively associated with risk of deficiency for all nutrients studied. This is due to greater consumption of foods including micronutrient-rich animal-source foods. Previous research has shown that calcareous soils in Malawi result in higher crop selenium concentrations. Here we show that the effect of soil type is more important than household wealth in providing beneficial increases in dietary selenium supply.

 

What next?

Ensuring food security in Malawi remains a huge challenge but there are possible interventions to improve dietary mineral supplies. Interventions can be successful, e.g. the national salt iodisation programme which is responsible for the majority of the dietary supply of iodine in Malawi (as with many other countries globally). There are crop breeding programmes to increase micronutrient concentrations, particularly for zinc. Selenium could be increased in crops through enriched fertilisers, as shown in experimental trials in Malawi conducted on soils with low inherent selenium availability. Fertiliser fortification is being successfully used as a national approach to increasing dietary selenium supply in Finland.

Further information

You can read our open access paper if you would like find out more, including the full set of maps we have generated for Malawi.

This work was one of the outputs of Edward’s PhD, as well as that of the ongoing PhD project of Diriba Kumssa. Dr Edward Joy was supervised by Prof. Martin Broadley, Dr Scott Young, the late Prof. Colin Black (School of Biosciences, University of Nottingham (UoN)), Dr Louise Ander, Dr Michael Watts (British Geological Survey (BGS)) and Dr Allan Chilimba (Ministry of Agriculture and Irrigation, Malawi), with PhD funding from UoN and BGS.

Edward’s PhD research is part of an ongoing programme of research in the Centre for Environmental Geochemistry (School of Biosciences, UoN and Inorganic Geochemistry, BGS) alongside our fantastic wider network of research partners in Malawi, and beyond.

Our most recent activity is the initiation of the Royal Society – Department for International Development (RS-DFID) Africa Capacity Building project “Strengthening African capacity in soil geochemistry” in Malawi, Zambia and Zimbabwe. We have recently welcomed 5 new PhD students into this 5 year project, two of whom will directly build upon outputs from Edward’s PhD, with plans for more! Edward is now working at the London School of Hygiene Tropical Medicine (LSHTM).

by Edward Joy and Louise Ander

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19

    Abstract

    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17

    Abstract

    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12

    Abstract

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.