SEGH Articles

Michael Watts elected SEGH President

10 October 2017
Dr Michael Watts was recently elected SEGH President, following a handover from Dr Chaosheng Zhang. Michael has been involved in the SEGH for nearly 15 years as a member of the European board and active on the International board via his role in redesigning the website since 2010.

Dr Michael Watts was recently elected SEGH President, following a handover from Dr Chaosheng Zhang. Michael has been involved in the SEGH for nearly 15 years as a member of the European board and active on the International board via his role in redesigning the website since 2010.

Dr Michael Watts is the Head of Inorganic Geochemistry at the British Geological Survey. He has a team of geochemists and analytical chemists, supporting a suite of geochemistry laboratories and leading on environmental geochemistry projects in the UK and overseas, particularly in Africa. These projects involve investigations that span pollutant pathways from source through to human biomonitoring and ecological hazard assessment; micronutrient pathways from soil-crop-diet-health, with both aspects seeking better knowledge of geochemical controls on mobility/biovailability of micronutrients and potentially harmful elements through to measures of health status. Activities often link with industry, overseas governments, regulatory bodies or academia, in particular through a joint Centre for Environmental Geochemistry with the University of Nottingham.

We take the opportunity to ask a few questions of Michael to gain an insight into his experience as an environmental scientist, member of SEGH and his hopes for the future of SEGH.

What are your hopes for the future of SEGH and how do you intend to lead the SEGH forward as the new President?

Firstly, I would like to thank Dr Chaosheng Zhang for his steering of SEGH through a period of significant change, including revision and acceptance by the international board for the revised constitution and strategy to make SEGH ‘fit for purpose’ for the future. 

SEGH faces many challenges, namely competition from numerous societies, financial constraints for members, maintaining representation for members equitably across each region and financial pressures to remain relevant e.g. maintaining web interaction, communications and relevancy to PhD students and early career scientists. Young scientists will be increasingly discerning in choosing which societies to become involved in and spend their money on subscriptions. The SEGH board will need to constantly question what the member is gaining.  This will need to include better communication with members, whether through web interaction, web articles or the like, which has been particularly poor in recent years. This could become part of the terms of reference that board members sign up to and agree to actively participate and drive SEGH forward, seek out new opportunities, gauge the current themes relevant to SEGH and encourage young scientists to join SEGH. Some ideas under discussion have included a form of fellowship for the mentoring of members, which should form part of a wider consultation with the membership.

SEGH is at the cusp of consolidating on its reach across the regions, with good knowledge of web traffic driving emphasis on developing and renewing sections.  For example, a section for Africa will be developed in the next year leading up to the conference in Victoria Falls in July 2018. Whilst web traffic has increased significantly in Africa, this has also been the case in the Indian sub-continent which needs further attention for the Asia/Pacific section.  Interaction via the web and membership numbers has fallen away in Southern America, which will need to be addressed by the Americas regional section.  European membership and web traffic has remained strong and diversified in recent years. We will still need to maintain our efforts in this area, particularly eastern and southern Europe which has experienced financial instability in recent years.  Innovative ideas will be required, whether this is via web communications, hosting of small local symposia or online groups, with an emphasis on keeping costs down to ensure affordability for members. SEGH has been successful in running conferences each year that bring together early, mid and late career scientists to share their research and experience.  SEGH has been very good at fostering new talent, but how could we do this better with an increasingly interconnected world?  Should we be considering other platforms to supplement and reinforce the traditional conference schedule? This is a point where we need to engage with members for fresh ideas.

What do you think are the major scientific issues facing the society’s areas of research and could SEGH take a lead role in these?

The major theme for SEGH is still the interdisciplinary nature of the society in linking through from environmental studies to the health of humans, animals, wildlife and wider ecological contexts. There has been patchy success over the years and perhaps SEGH will continue to struggle to link directly with medical practitioners. However, there are examples of inter-disciplinary research linked through epidemiologists, public/animal health professionals and regulatory bodies. Further efforts are required to draw in members from these areas, but also improve the relevancy of research by drawing in socio-economic skills to better demonstrate pathways to impact to justify research expenditure. SEGH has a unique platform to link such disciplines. SEGH also has the potential to facilitate members in working through Official Development Assistance programmes targeting the United Nations Strategic Development Goals (SDG), of which there are 17(http://segh.net/articles/geology_for_global_development_gfgd/ ), the majority of which SEGH members research most likely overlaps. Enormous sums of money are being spent to target the SDG’s, SEGH has a potential role to play in ensuring funds are spent wisely, researchers are connected for funding proposals for sustainable development opportunities.  We have seen a little more diversity of the use of technologies in research particularly at Brussels 2015, such as biomarker research. A future challenge will be for the transfer of technologies ‘fit for purpose’ for researchers in Lower Middle income Countries (LMIC) who often only lack technical capacity to engage equally in international research programmes, rather than samples disappearing to the so-called developed world for data outputs.

During your scientific career, how was your membership of SEGH benefited you personally? What do you are the advantages of early – mid – late career scientists joining SEGH?

I joined SEGH in 2002/03 and attended my first conference in Glasgow where I was buttonholed at the bar to see if I would be interested in joining the SEGH board as ‘new blood’. Both as a member attending meetings and as a board member I have made like-minded friends, many of whom in the early days provided some form of mentorship, linking me with appropriate researchers who were also trying to work in the gap between environment and health sciences. Some of these links progressed through to funded projects and publications, helping me to get my research career kick-started. Certainly having independent and outside research links via SEGH has helped my career at BGS, but has also enriched my understanding of inter-disciplinary research. I think this continues to be the case for mid and late career scientists, with SEGH providing a friendly environment to reinforce relationships and develop new links as scientific research questions and priorities evolve. I am probably in the mid-career phase and seeing students present research is also very rewarding, students and early career scientists are generally where the cutting edge research is taking place as they have the time to focus before other responsibilities start to soak up time. As already mentioned, as long as I have been involved, SEGH has placed emphasis on giving young and new scientists an opportunity to present their research. This is not always the case at other meetings and is an aspect of SEGH we should strive to protect.

By Dr Daniel Middleton

SEGH webmaster

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • A cross-sectional survey based on blood VOCs, hematological parameters and urine indicators in a population in Jilin, Northeast China 2019-01-16

    Abstract

    The objective of this study was to examine whether long-term exposure to low-dose volatile organic compounds (VOCs) will have an effect on the health of non-occupational population. A total of 499 non-occupational participants aged more than 18 that live around Jilin Petrochemical Industrial Zone were chosen by stratified cluster random sampling. Their blood VOCs’ levels, hematological parameters and urine indicators together with detailed questionnaire data were used to find possible relationships using binary logistic regression analysis. The detection rate of benzene in the blood was high in the non-occupational population around the industrial area, and it even reached 82.3% in males but no significant difference was recorded between male and female population. In addition, trichloroethane (male: 33.2% V female: 21.7%; p = 0.002), carbon tetrachloride (males: 20.3% V females: 7.5%; p < 0.001) and trichlorethylene (male: 34.9% V female: 24.7%; p = 0.004) all showed significant differences in gender, and without exception, the prevalence of males was higher in these three VOCs than of females. The changes in red blood cell (RBC), hematocrit (HCT) and basophils are correlated with carbon tetrachloride, trichloroethylene and chloroform, respectively. And RBC, HCT and basophils are statistically significant in male compared with female of the study population. The increase in trichlorethylene was associated with an increase of 1.723% (95% CI 1.058–2.806) in HCT. The increase in carbon tetrachloride showed a more significant correlation with an increase of 2.638% in RBC count (95% CI 1.169–5.953). And trichloromethane led to a 1.922% (95% CI 1.051–3.513) increase in basophils. The changes in urinary WBC, urine ketone (KET) and urinary bilirubin (BIL) showed significant correlation with benzene, carbon tetrachloride and dibromochloromethane, respectively. The correlation in females is more significant than in males. The increase of benzene in the female population increased urinary leukocyte count by 2.902% (95% CI 1.275–6.601). The effect of carbon tetrachloride on KET was particularly pronounced, resulting in an increase of 7.000% (95% CI 1.608–30.465). Simultaneously, an increase in dibromochloromethane caused an increase of 4.256% (95% CI 1.373–13.192) in BIL. The changes in RBC, HCT and basophils can only serve as an auxiliary indicator for disease diagnosis, so they have no significant clinical significance. However, the alteration of urinary WBC, KET and BIL has great clinical significances, and it is suggested that the monitoring of the above indicators from low-dose long-term exposure be strengthen in this area.

  • Interannual variation in grassland net ecosystem productivity and its coupling relation to climatic factors in China 2019-01-08

    Abstract

    Grassland, as an important part of land cover, plays an important role in the global carbon cycle and carbon balance. Net ecosystem productivity (NEP) is a key indicator of the carbon cycle process and an important factor in assessing ecosystem security and maintaining ecosystem balance. In this paper, Boreal Ecosystem Productivity Simulator (BEPS) combining meteorological data, leaf area index, and land cover type data were used to simulate the grassland NEP of China from 1979 to 2008. This model was also used to analyze the responses to changes in climate factors, interannual variation in carbon conversion efficiency, drought stress coefficient, and water use efficiency of grassland in China. Results showed that from 1979 to 2008, the mean annual grassland NEP was 13.6 g C/m2 with weak carbon sinks. The grassland NEP distribution increased from northwest to southeast across China. Regions with NEP of > 0 (C sink) accounted for 73.1% of the total grassland area of China. The total C sequestration reached 26.6 Tg yearly, and grassland NEP was positive from 1979 to 2008. The annual changing characteristics were analyzed. Grassland NEP was positive with carbon sink from June to September, which was negative with carbon source in the remaining months. The carbon conversion efficiency and water use efficiency of the grassland increased significantly within 30 years. NEP showed positive correlation with precipitation (accounting for 74.2% of the total grassland area was positively correlated) but weakly positive correlation with temperature (50.2% of the case). Furthermore, significant positive correlation was found between grassland NEP and precipitation, especially in northeastern and central Inner Mongolia, northern Tianshan of Xinjiang, southwestern Tibet, and southern Qinghai Lake.

  • The effects of humic water on endothelial cells under hyperglycemic conditions: inflammation-associated parameters 2019-01-04

    Abstract

    Humic waters (HW) are globally unique, deep underground, dark-brown waters containing humic acids, and they present numerous therapeutic activities including anti-inflammatory. In the present study, we use HW from source in Poland. Diabetes has become an epidemic and is a risk factor of cardiovascular diseases. Hyperglycemia in diabetes is responsible for damaging of the endothelium and increases inflammation on the surface of the vascular lining. The inflammatory process in diabetes is associated with the secretion of inflammatory cytokines by endothelial cells, e.g., tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), and with the reduction of cell proliferation. In the study, we used cultures of endothelial cells (HUVEC line—human umbilical vein endothelial cells) with the addition 30 mM/L of glucose in the culture medium which imitated the conditions of uncontrolled diabetes. The addition of HW in the proper volume to the culture medium causes reduction of inflammation by significant decrease in inflammatory cytokines such as TNFα and IL-6 and also leads to enhancement of the cell proliferation. It appears that the adverse effects of hyperglycemia on vascular endothelial cells may be corrected by addition of humic water. The above promising results of in vitro tests provide an opportunity to the possible use of humic water in the supportive treatment of endothelial dysfunction disorders in diabetes. However, this issue requires further clinical research.