SEGH Articles

Michael Watts elected SEGH President

10 October 2017
Dr Michael Watts was recently elected SEGH President, following a handover from Dr Chaosheng Zhang. Michael has been involved in the SEGH for nearly 15 years as a member of the European board and active on the International board via his role in redesigning the website since 2010.

Dr Michael Watts was recently elected SEGH President, following a handover from Dr Chaosheng Zhang. Michael has been involved in the SEGH for nearly 15 years as a member of the European board and active on the International board via his role in redesigning the website since 2010.

Dr Michael Watts is the Head of Inorganic Geochemistry at the British Geological Survey. He has a team of geochemists and analytical chemists, supporting a suite of geochemistry laboratories and leading on environmental geochemistry projects in the UK and overseas, particularly in Africa. These projects involve investigations that span pollutant pathways from source through to human biomonitoring and ecological hazard assessment; micronutrient pathways from soil-crop-diet-health, with both aspects seeking better knowledge of geochemical controls on mobility/biovailability of micronutrients and potentially harmful elements through to measures of health status. Activities often link with industry, overseas governments, regulatory bodies or academia, in particular through a joint Centre for Environmental Geochemistry with the University of Nottingham.

We take the opportunity to ask a few questions of Michael to gain an insight into his experience as an environmental scientist, member of SEGH and his hopes for the future of SEGH.

What are your hopes for the future of SEGH and how do you intend to lead the SEGH forward as the new President?

Firstly, I would like to thank Dr Chaosheng Zhang for his steering of SEGH through a period of significant change, including revision and acceptance by the international board for the revised constitution and strategy to make SEGH ‘fit for purpose’ for the future. 

SEGH faces many challenges, namely competition from numerous societies, financial constraints for members, maintaining representation for members equitably across each region and financial pressures to remain relevant e.g. maintaining web interaction, communications and relevancy to PhD students and early career scientists. Young scientists will be increasingly discerning in choosing which societies to become involved in and spend their money on subscriptions. The SEGH board will need to constantly question what the member is gaining.  This will need to include better communication with members, whether through web interaction, web articles or the like, which has been particularly poor in recent years. This could become part of the terms of reference that board members sign up to and agree to actively participate and drive SEGH forward, seek out new opportunities, gauge the current themes relevant to SEGH and encourage young scientists to join SEGH. Some ideas under discussion have included a form of fellowship for the mentoring of members, which should form part of a wider consultation with the membership.

SEGH is at the cusp of consolidating on its reach across the regions, with good knowledge of web traffic driving emphasis on developing and renewing sections.  For example, a section for Africa will be developed in the next year leading up to the conference in Victoria Falls in July 2018. Whilst web traffic has increased significantly in Africa, this has also been the case in the Indian sub-continent which needs further attention for the Asia/Pacific section.  Interaction via the web and membership numbers has fallen away in Southern America, which will need to be addressed by the Americas regional section.  European membership and web traffic has remained strong and diversified in recent years. We will still need to maintain our efforts in this area, particularly eastern and southern Europe which has experienced financial instability in recent years.  Innovative ideas will be required, whether this is via web communications, hosting of small local symposia or online groups, with an emphasis on keeping costs down to ensure affordability for members. SEGH has been successful in running conferences each year that bring together early, mid and late career scientists to share their research and experience.  SEGH has been very good at fostering new talent, but how could we do this better with an increasingly interconnected world?  Should we be considering other platforms to supplement and reinforce the traditional conference schedule? This is a point where we need to engage with members for fresh ideas.

What do you think are the major scientific issues facing the society’s areas of research and could SEGH take a lead role in these?

The major theme for SEGH is still the interdisciplinary nature of the society in linking through from environmental studies to the health of humans, animals, wildlife and wider ecological contexts. There has been patchy success over the years and perhaps SEGH will continue to struggle to link directly with medical practitioners. However, there are examples of inter-disciplinary research linked through epidemiologists, public/animal health professionals and regulatory bodies. Further efforts are required to draw in members from these areas, but also improve the relevancy of research by drawing in socio-economic skills to better demonstrate pathways to impact to justify research expenditure. SEGH has a unique platform to link such disciplines. SEGH also has the potential to facilitate members in working through Official Development Assistance programmes targeting the United Nations Strategic Development Goals (SDG), of which there are 17(http://segh.net/articles/geology_for_global_development_gfgd/ ), the majority of which SEGH members research most likely overlaps. Enormous sums of money are being spent to target the SDG’s, SEGH has a potential role to play in ensuring funds are spent wisely, researchers are connected for funding proposals for sustainable development opportunities.  We have seen a little more diversity of the use of technologies in research particularly at Brussels 2015, such as biomarker research. A future challenge will be for the transfer of technologies ‘fit for purpose’ for researchers in Lower Middle income Countries (LMIC) who often only lack technical capacity to engage equally in international research programmes, rather than samples disappearing to the so-called developed world for data outputs.

During your scientific career, how was your membership of SEGH benefited you personally? What do you are the advantages of early – mid – late career scientists joining SEGH?

I joined SEGH in 2002/03 and attended my first conference in Glasgow where I was buttonholed at the bar to see if I would be interested in joining the SEGH board as ‘new blood’. Both as a member attending meetings and as a board member I have made like-minded friends, many of whom in the early days provided some form of mentorship, linking me with appropriate researchers who were also trying to work in the gap between environment and health sciences. Some of these links progressed through to funded projects and publications, helping me to get my research career kick-started. Certainly having independent and outside research links via SEGH has helped my career at BGS, but has also enriched my understanding of inter-disciplinary research. I think this continues to be the case for mid and late career scientists, with SEGH providing a friendly environment to reinforce relationships and develop new links as scientific research questions and priorities evolve. I am probably in the mid-career phase and seeing students present research is also very rewarding, students and early career scientists are generally where the cutting edge research is taking place as they have the time to focus before other responsibilities start to soak up time. As already mentioned, as long as I have been involved, SEGH has placed emphasis on giving young and new scientists an opportunity to present their research. This is not always the case at other meetings and is an aspect of SEGH we should strive to protect.

By Dr Daniel Middleton

SEGH webmaster

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Total arsenic concentrations in Chinese children’s urine by different geographic locations, ages, and genders 2018-06-01

    Abstract

    Little is known about the variation of Chinese children’s exposure to arsenic by geography, age, gender, and other potential factors. The main objective of this study was to investigate the total arsenic concentration in Chinese children’s urine by geographic locations, ages, and genders. In total, 259 24-h urine samples were collected from 210 2- to 12-year-old children in China and analyzed for total arsenic and creatinine concentrations. The results showed that the upper limit (upper limit of the 90% confidence interval for the 97.5 fractile) was 27.51 µg/L or 55.88 µg/g creatinine for Chinese children. The total urinary arsenic levels were significantly different for children in Guangdong, Hubei, and Gansu provinces (P < 0.05), where the upper limits were 24.29, 58.70, and 44.29 µg/g creatinine, respectively. In addition, the total urinary arsenic levels were higher for 2- to 7-year-old children than for 7- to 12-year-old children (P < 0.05; the upper limits were 59.06 and 44.29 µg/g creatinine, respectively) and higher for rural children than for urban children (P < 0.05; the upper limits were 59.06 and 50.44 µg/g creatinine, respectively). The total urinary arsenic levels for boys were not significantly different from those for girls (P > 0.05), although the level for boys (the upper limit was 59.30 µg/g) was slightly higher than that for girls (the upper limit was 58.64 µg/g creatinine). Because the total urinary arsenic concentrations are significantly different for general populations of children in different locations and age groups, the reference level of total urinary arsenic might be dependent on the geographic site and the child’s age.

  • The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting 2018-06-01

    Abstract

    The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting were investigated. During the whole meeting, nine PM2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM2.5 was 122.28 μg m−3. NO3 , NH4 +, SO4 2− accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl, all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m−3, with an average concentration of 52.51 μg m−3, which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m−3, respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM2.5. The directly dispersing by mixing layer height increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, and these are the only two key removing mechanisms of PM2.5 in Xinxiang during the meeting.

  • Review of total suspended particles (TSP) and PM 2.5 concentration variations in Asia during the years of 1998–2015 2018-06-01

    Abstract

    In Asian countries such as China, Malaysia, Pakistan, India, Taiwan, Korea, Japan and Hong Kong, ambient air total suspended particulates and PM2.5 concentration data were collected and discussed during the years of 1998–2015 in this study. The aim of the present study was to (1) investigate and collect ambient air total suspended particulates (TSP) and PM2.5 concentrations for Asian countries during the past two decades. (2) Discuss, analyze and compare those particulates (TSP and PM2.5) annual concentration distribution trends among those Asian countries during the past two decades. (3) Test the mean concentration differences in TSP and PM2.5 among the Asian countries during the past decades. The results indicated that the mean TSP concentration order was shown as China > Malaysia > Pakistan > India > Taiwan > Korea > Japan. In addition, the mean PM2.5 concentration order was shown as Vietnam > India > China > Hong Kong > Mongolia > Korea > Taiwan > Japan and the average percentages of PM2.5 concentrations for Taiwan, China, Japan, Korea, Hong Kong, Mongolia and Other (India and Vietnam) were 8, 21, 6, 8, 14, 13 and 30%, respectively, during the past two decades. Moreover, t test results revealed that there were significant mean TSP and PM2.5 concentration differences for either China or India to any of the countries such as Taiwan, Korea and Japan in Asia during the past two decades for this study. Noteworthy, China and India are both occupied more than 60% of the TSP and PM2.5 particulates concentrations out of all the Asia countries. As for Taiwan, the average PM2.5 concentration displayed increasing trend in the years of 1998–1999. However, it showed decreasing trend in the years of 2000–2010. As for Korea, the average PM2.5 concentrations showed decreasing trend during the years of 2001–2013. Finally, the average PM2.5 concentrations for Mongolia displayed increasing trend in the years of 2004–2013.