SEGH Articles

Michael Watts elected SEGH President

10 October 2017
Dr Michael Watts was recently elected SEGH President, following a handover from Dr Chaosheng Zhang. Michael has been involved in the SEGH for nearly 15 years as a member of the European board and active on the International board via his role in redesigning the website since 2010.

Dr Michael Watts was recently elected SEGH President, following a handover from Dr Chaosheng Zhang. Michael has been involved in the SEGH for nearly 15 years as a member of the European board and active on the International board via his role in redesigning the website since 2010.

Dr Michael Watts is the Head of Inorganic Geochemistry at the British Geological Survey. He has a team of geochemists and analytical chemists, supporting a suite of geochemistry laboratories and leading on environmental geochemistry projects in the UK and overseas, particularly in Africa. These projects involve investigations that span pollutant pathways from source through to human biomonitoring and ecological hazard assessment; micronutrient pathways from soil-crop-diet-health, with both aspects seeking better knowledge of geochemical controls on mobility/biovailability of micronutrients and potentially harmful elements through to measures of health status. Activities often link with industry, overseas governments, regulatory bodies or academia, in particular through a joint Centre for Environmental Geochemistry with the University of Nottingham.

We take the opportunity to ask a few questions of Michael to gain an insight into his experience as an environmental scientist, member of SEGH and his hopes for the future of SEGH.

What are your hopes for the future of SEGH and how do you intend to lead the SEGH forward as the new President?

Firstly, I would like to thank Dr Chaosheng Zhang for his steering of SEGH through a period of significant change, including revision and acceptance by the international board for the revised constitution and strategy to make SEGH ‘fit for purpose’ for the future. 

SEGH faces many challenges, namely competition from numerous societies, financial constraints for members, maintaining representation for members equitably across each region and financial pressures to remain relevant e.g. maintaining web interaction, communications and relevancy to PhD students and early career scientists. Young scientists will be increasingly discerning in choosing which societies to become involved in and spend their money on subscriptions. The SEGH board will need to constantly question what the member is gaining.  This will need to include better communication with members, whether through web interaction, web articles or the like, which has been particularly poor in recent years. This could become part of the terms of reference that board members sign up to and agree to actively participate and drive SEGH forward, seek out new opportunities, gauge the current themes relevant to SEGH and encourage young scientists to join SEGH. Some ideas under discussion have included a form of fellowship for the mentoring of members, which should form part of a wider consultation with the membership.

SEGH is at the cusp of consolidating on its reach across the regions, with good knowledge of web traffic driving emphasis on developing and renewing sections.  For example, a section for Africa will be developed in the next year leading up to the conference in Victoria Falls in July 2018. Whilst web traffic has increased significantly in Africa, this has also been the case in the Indian sub-continent which needs further attention for the Asia/Pacific section.  Interaction via the web and membership numbers has fallen away in Southern America, which will need to be addressed by the Americas regional section.  European membership and web traffic has remained strong and diversified in recent years. We will still need to maintain our efforts in this area, particularly eastern and southern Europe which has experienced financial instability in recent years.  Innovative ideas will be required, whether this is via web communications, hosting of small local symposia or online groups, with an emphasis on keeping costs down to ensure affordability for members. SEGH has been successful in running conferences each year that bring together early, mid and late career scientists to share their research and experience.  SEGH has been very good at fostering new talent, but how could we do this better with an increasingly interconnected world?  Should we be considering other platforms to supplement and reinforce the traditional conference schedule? This is a point where we need to engage with members for fresh ideas.

What do you think are the major scientific issues facing the society’s areas of research and could SEGH take a lead role in these?

The major theme for SEGH is still the interdisciplinary nature of the society in linking through from environmental studies to the health of humans, animals, wildlife and wider ecological contexts. There has been patchy success over the years and perhaps SEGH will continue to struggle to link directly with medical practitioners. However, there are examples of inter-disciplinary research linked through epidemiologists, public/animal health professionals and regulatory bodies. Further efforts are required to draw in members from these areas, but also improve the relevancy of research by drawing in socio-economic skills to better demonstrate pathways to impact to justify research expenditure. SEGH has a unique platform to link such disciplines. SEGH also has the potential to facilitate members in working through Official Development Assistance programmes targeting the United Nations Strategic Development Goals (SDG), of which there are 17(http://segh.net/articles/geology_for_global_development_gfgd/ ), the majority of which SEGH members research most likely overlaps. Enormous sums of money are being spent to target the SDG’s, SEGH has a potential role to play in ensuring funds are spent wisely, researchers are connected for funding proposals for sustainable development opportunities.  We have seen a little more diversity of the use of technologies in research particularly at Brussels 2015, such as biomarker research. A future challenge will be for the transfer of technologies ‘fit for purpose’ for researchers in Lower Middle income Countries (LMIC) who often only lack technical capacity to engage equally in international research programmes, rather than samples disappearing to the so-called developed world for data outputs.

During your scientific career, how was your membership of SEGH benefited you personally? What do you are the advantages of early – mid – late career scientists joining SEGH?

I joined SEGH in 2002/03 and attended my first conference in Glasgow where I was buttonholed at the bar to see if I would be interested in joining the SEGH board as ‘new blood’. Both as a member attending meetings and as a board member I have made like-minded friends, many of whom in the early days provided some form of mentorship, linking me with appropriate researchers who were also trying to work in the gap between environment and health sciences. Some of these links progressed through to funded projects and publications, helping me to get my research career kick-started. Certainly having independent and outside research links via SEGH has helped my career at BGS, but has also enriched my understanding of inter-disciplinary research. I think this continues to be the case for mid and late career scientists, with SEGH providing a friendly environment to reinforce relationships and develop new links as scientific research questions and priorities evolve. I am probably in the mid-career phase and seeing students present research is also very rewarding, students and early career scientists are generally where the cutting edge research is taking place as they have the time to focus before other responsibilities start to soak up time. As already mentioned, as long as I have been involved, SEGH has placed emphasis on giving young and new scientists an opportunity to present their research. This is not always the case at other meetings and is an aspect of SEGH we should strive to protect.

By Dr Daniel Middleton

SEGH webmaster

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.