SEGH Articles

Putting the Health in SEGH

18 November 2015
Dr Alex Stewart, recently retired from Public Health England, has been an active member of the SEGH International board over many years and a major driving force in bringing the health community together with environmental scientists to promote inter-disciplinary research.

Dr Alex Stewart retired at the end of June as a Consultant in Health Protection for Public Health England, for which his responsibilities included the recognition, characterisation and response to the health effects of environmental issues, including the geochemical components.  Dr Stewart has been involved in SEGH activities for about 20 years, having gained experience and an interest in linking environmental geochemistry and its influence on human health through his interest in iodine deficiency in his years as a GP in the Karakoram mountains of northern Pakistan.

We take the opportunity to ask a few questions of Alex to gain an insight into his extensive experience to the benefit of other scientists at any stage of their career.  In addition, Alex gives us some idea of his plans for the future and his continued engagement with SEGH.

When you started out on your career, what were your fears, hopes, and the reality?  Were there any surprises along the way? 

As a young medical doctor I wanted to work in the wilder parts of the world, but wondered if I was up to it. I was able to join an experienced doctor in starting the General Practice in Baltistan, northern Pakistan, where the health services were thin, stretched and of limited ability. When my colleague retired a few years later, I took over with confidence and developed the work. Perhaps the biggest surprise was my ability to adapt good medical practice in a situation where resources were limited (we ran an outpatient clinic without nearby hospital or laboratory support) and the villagers did not always return quickly for review. It was sometimes hard to know if patients had died, got better or decided my treatments were not worth having! This made learning about what worked and what did not a lot slower but eventually earned me local respect because I was able to ground the medical work in a deep knowledge of the local community.

How were the environmental and health sciences considered early in your career and was there much collaboration between disciplines at the time?

We in health had little understanding of the impact of environmental issues on health, particularly when I was a student and young doctor. Doctors still largely concentrate on the person sitting in our consulting room and ignore wider issues, including, sadly, family and social aspects. The natural environment hardly came into my early understanding of health and disease.

Was there any one event that stood out for yourself personally that influenced your career or the perception of geochemical and health research?

The sharpest event that affected my perception of geochemistry and health was an evening in our house in Baltistan with two passing geologists from Oxford. They were studying the Main Karakoram Thrust, often by binoculars from their jeep in the valley, covering a lot of ground quickly: Baltistan is dry, with very little soil cover on the rocks, so the basic geology can be quite clear in many places. I had become interested in the locally perceived differences in the prevalence of goitre (thyroid swelling in the neck due, in this area, to iodine deficiency) between our side of the river (“1/100”, I was told) and the inhabitants of the villages across the river (“1/10” was the local comment). I had looked and asked about differences between the two sides of the valley and could find nothing that made sense until these passing geologists showed me the Main Karakoram Thrust and indicated its importance as the boundary between Asia (the far side) and the Island Arc north of India (our side). As I began to look into this it was clear that plate tectonics played some part in the distribution of the iodine deficiency disorders across northern Pakistan and perhaps further afield (Stewart AG. Drifting continents and endemic goitre in northern Pakistan. British Medical Journal, 1990; 300: 1507-1512). Following this through led eventually to my appointment as a Consultant in Health Protection with interest in and responsibility for environmental issues (e.g. Mahoney G, Stewart AG, Kennedy N, Whitely B, Turner L, Wilkinson E. Achieving attainable outcomes from good science in an untidy world: Case studies in land and air pollution. Environmental Geochemistry & Health. 2015; 37: 689-706.).

How has your involvement in SEGH helped in your career and enjoyment of your work?

SEGH has been of enormous support, stimulation and help in my career over the past 20-odd years. I first encountered it at a halogen meeting in Kingston-upon-Thames while home on leave in 1994. I went to hear Ron Fuge, the iodine guru from Aberystwyth. Although Ron was unable to attend the meeting at the last minute, I found some of the other presentations fascinating and Joy Carter (former SEGH President), at Reading in those days, enrolled me into SEGH. This encouraged me (particularly after our sudden and unexpected return to the UK in 1996 after the Pakistani Government asked us to leave, reasons unstated) to build friendships, read the journal, and attend meetings. Through the SEGH meetings, in particular, I met a lot of fascinating people and learned a lot more than I could have imagined about the environment, geochemistry and possible influences on health. I also gave presentations or posters which were probed in the SEGH gentle but knowledgeable manner, helping develop my thinking on a number of issues. I have been delighted to serve on the SEGH board; SEGH has been a constant during periods of diminished support for environmental public health issues in the health protection arena (Stewart AG, Worsley A, Holden V, Hursthouse AS. Evaluating the impact of interdisciplinary networking in Environmental Geochemistry and Health: Reviewing SEGH conferences and workshops. Environmental Geochemistry and Health, Special edition. 2012; 34(6): 653-664).

Do you have any advice for young scientists setting out on their careers in environmental geochemistry or health sciences?

Don’t be afraid of cross-boundary work: that’s where exciting challenges and discoveries are to be made in any subject. Develop friendships and relationships with people outside your speciality, learn their scientific language and ways of thinking and undertake joint work. You never know where that will lead.

What do you consider to be the important topics for environmental-geochemistry-health related research in the future?

We need to continue our interest in elemental chemistry, but move beyond metals into organics, into volatiles, building relationships with air-scientists to look at the unseen pollution and health effects of fine and ultra-fine particles. I think linking the genetic fingerprint of cancers with specific toxins will enable us to identify, control and reduce/prevent specific diseases. However, this cannot be done by either geochemists or health professionals alone, but only in collaboration. Collaboration means both sides actively being involved in each other’s research proposals and activities, not just bolting two different approaches together.

What are some of your hopes for the future?

I would dearly like to see more health professionals involved with SEGH, but have run out of ideas how to involve them. I hope the younger generation of scientists can succeed where I have been unsuccessful.

Now that I am retired I hope to have some time to examine some of the environmental-health questions that have sat on my desk for 10+ years, such as: Does environmental iodine deficiency exist? What is the explanation for the global distribution of iodine deficiency disorders? What is the environmental input, if any, into lung cancer in North West England? Could some of the ill-health of deprived communities in industrialised countries be due to historical pollution, perhaps through trans-generational mechanisms?

 

On a personal note, Alex has made an important contribution to SEGH's encouragement of cross disciplinary work across geochemistry and health sciences, both in the UK and through European meetings.  Alex's tireless enthusiasm has helped to provide a platform from which the following generation of cross disciplinary scientists are less inhibited by the artificial boundaries.  Fortunately, Alex will continue to be engaged with SEGH, clearly with some exciting issues to pursue in retirement.

by Dr Michael Watts

British Geological Survey (SEGH webmaster)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.