SEGH Articles

Remedial Solutions for polluted soils: developing research collaboration between UK and China

17 November 2015
Hunan University of Science & Technology (HNUST), Xiangtan, PR, China. The School of Civil Engineering houses a Key Library for Shale Gas extraction and has undertaken work to assess resources and their low impact extraction.
 
SEGH member and former President Professor Andrew Hursthouse, of the University of the West of Scotland, has been working in the Hunan University of Science & Technology (HNUST), Xiangtan, PR, China. Andrew spent a month during September and October 2015, based in the School of Civil Engineering, developing a research programme based on soil and groundwater treatment approaches to agricultural and resource development problems. The School houses a Key Library for Shale Gas extraction and has undertaken work to assess resources and their low impact extraction. These are important issues, particularly in the Hunan region of China. Wide spread non-ferrous metal extraction in the region has also created problems for food safety and research into locally viable management strategies is needed.
 
 
The project has been supported by the award of research fellowships to Prof Hursthouse through the Overseas Chair Professor “Xiangjiang Scholars Programme” 2013-14 and High End Expert Recruitment – fellowship in contaminated land research 2014-15, from the State Administration of Foreign Experts affairs, Peoples Republic of China. The visits have involved seminars and knowledge exchange and research programme fieldwork with colleagues from HNUST and the University of Hunan in Changsha. Interests in the re-use of waste materials for low cost treatment of contaminated soils are being developed using experiences from applications in the EU.
 
by Professor Andrew Hursthouse, University West of Scotland
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil 2018-02-22

    Abstract

    The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

  • 2017 Outstanding Reviewers 2018-02-21
  • Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia) 2018-02-13

    Abstract

    Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.