SEGH Articles

35th International Conference on Environmental Geochemistry and Health

14 November 2018
The 35th International Conference on Environmental Geochemistry and Health will be organized by Drs Sanja Potgieter-Vermaak and David Megson at Manchester Metropolitan University, Manchester, UK between the 1st and 5th of July 2019.

You are invited to the 35th International Conference on Environmental Geochemistry and Health organized by Drs Sanja Potgieter-Vermaak and David Megson at Manchester Metropolitan University, Manchester, UK.

MMU

(Image credit: Manchester Metropolitan University)

 

The conference will take place at the conference facilities of The Business School at Manchester Metropolitan University, Manchester UK between 1 and 5 July 2019.

This annual conference provides a forum for international scientists, consultants, regulatory authorities and other practitioners to debate the current-day environmental challenges. The conference will focus on the links between environmental health and the broad area of environmental geochemistry and will broadly follow the following themes:

Urban and industrial sustainable development

Environmental Pollution & Change

New technologies

Monitoring the environment

Environmental Health

Sustainable nutrition and agriculture

In addition to the presentations (posters and orals), exhibitions and academic debates, an exciting social programme is planned, including visits to and events at iconic places of interest in Manchester. The formal dinner will be at the Midlands Hotel (https://themidlandhotel.co.uk/) and an interactive session on sustainable nutrition (MetMUnch http://metmunch.com/) will precede a pub-crawl. Please watch this space for more information.

Interested in presenting at our conference?

Submissions should be written from a strong technical background and should clearly demonstrate a familiarity with the related work and field. Further information can be found on https://www2.mmu.ac.uk/segh-19/ 

 

Interested in EXHIBITING at / SPONSORING our conference?

 The organising committee invites you to participate as a cooperate sponsor to ensure your visibility at this prestigious conference and to provide an excellent opportunity to network and market your company/agency. Please find further information here: https://www2.mmu.ac.uk/segh-19/ OR contact the SEGH 2019 chair at s.potgieter@mmu.ac.uk  

Additional information (accommodation, travelling to the conference, registrations options and fees, etc.) will be available shortly via our website, with registration opening in the autumn.

We look forward to welcoming you to Manchester, UK.


Event contact

Dr Sanja Potgieter-Vermaak

S.Potgieter@mmu.ac.uk

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis 2019-12-10

    Abstract

    This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM–EDX. The high level and significant variation of PM10 (162.2 µg m−3) and PM2.5 (83.9 µg m−3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.

  • Integration of remote sensing data and in situ measurements to monitor the water quality of the Ismailia Canal, Nile Delta, Egypt 2019-12-10

    Abstract

    The Ismailia Canal is one of the most important tributaries of the River Nile in Egypt. It is threatened by extinction from several sources of pollution, in addition to the intersection and nearness of the canal path with the Bilbayes drain and the effluent from the two largest conventional wastewater treatment plants in Greater Cairo. In this study, the integration of remote sensing and geospatial information system techniques is carried out to enhance the contribution of satellite data in water quality management in the Ismailia Canal. A Landsat-8 operational land imager image dated 2018 was used to detect the land use and land cover changes in the area of study, in addition to retrieving various spectral band ratios. Statistical correlations were applied among the extracted band ratios and the measured in situ water quality parameters. The most appropriate spectral band ratios were extracted from the NIR band (near infrared/blue), which showed a significant correlation with eight water quality metrics (CO3, BOD5, COD, TSS, TDS, Cl, NH4, and fecal coliform bacteria). A linear regression model was then established to predict information about these important water quality parameters along Ismailia Canal. The developed models, using linear regression equations for this study, give a set of powerful decision support frameworks with statistical tools to provide comprehensive, integrated views of surface water quality information under similar circumstances.

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.