SEGH Articles

35th International Conference on Environmental Geochemistry and Health

14 November 2018
The 35th International Conference on Environmental Geochemistry and Health will be organized by Drs Sanja Potgieter-Vermaak and David Megson at Manchester Metropolitan University, Manchester, UK between the 1st and 5th of July 2019.

You are invited to the 35th International Conference on Environmental Geochemistry and Health organized by Drs Sanja Potgieter-Vermaak and David Megson at Manchester Metropolitan University, Manchester, UK.

MMU

(Image credit: Manchester Metropolitan University)

 

The conference will take place at the conference facilities of The Business School at Manchester Metropolitan University, Manchester UK between 1 and 5 July 2019.

This annual conference provides a forum for international scientists, consultants, regulatory authorities and other practitioners to debate the current-day environmental challenges. The conference will focus on the links between environmental health and the broad area of environmental geochemistry and will broadly follow the following themes:

Urban and industrial sustainable development

Environmental Pollution & Change

New technologies

Monitoring the environment

Environmental Health

Sustainable nutrition and agriculture

In addition to the presentations (posters and orals), exhibitions and academic debates, an exciting social programme is planned, including visits to and events at iconic places of interest in Manchester. The formal dinner will be at the Midlands Hotel (https://themidlandhotel.co.uk/) and an interactive session on sustainable nutrition (MetMUnch http://metmunch.com/) will precede a pub-crawl. Please watch this space for more information.

Interested in presenting at our conference?

Submissions should be written from a strong technical background and should clearly demonstrate a familiarity with the related work and field. Further information can be found on https://www2.mmu.ac.uk/segh-19/ 

 

Interested in EXHIBITING at / SPONSORING our conference?

 The organising committee invites you to participate as a cooperate sponsor to ensure your visibility at this prestigious conference and to provide an excellent opportunity to network and market your company/agency. Please find further information here: https://www2.mmu.ac.uk/segh-19/ OR contact the SEGH 2019 chair at s.potgieter@mmu.ac.uk  

Additional information (accommodation, travelling to the conference, registrations options and fees, etc.) will be available shortly via our website, with registration opening in the autumn.

We look forward to welcoming you to Manchester, UK.


Event contact

Dr Sanja Potgieter-Vermaak

S.Potgieter@mmu.ac.uk

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.