SEGH Articles

35th International Conference on Environmental Geochemistry and Health

14 November 2018
The 35th International Conference on Environmental Geochemistry and Health will be organized by Drs Sanja Potgieter-Vermaak and David Megson at Manchester Metropolitan University, Manchester, UK between the 1st and 5th of July 2019.

You are invited to the 35th International Conference on Environmental Geochemistry and Health organized by Drs Sanja Potgieter-Vermaak and David Megson at Manchester Metropolitan University, Manchester, UK.

MMU

(Image credit: Manchester Metropolitan University)

 

The conference will take place at the conference facilities of the The Business School at Manchester Metropolitan University, Manchester UK between 1 and 5 July 2019.

This annual conference provides a forum for international scientists, consultants, regulatory authorities and other practitioners to debate the current-day environmental challenges. The conference will focus on the links between environmental health and the broad area of environmental geochemistry and will broadly follow the following themes:

Urban and industrial sustainable development

Environmental Pollution & Change

New technologies

Monitoring the environment

Environmental Health

Sustainable nutrition and agriculture

In addition to the presentations (posters and orals), exhibitions and academic debates, an exciting social programme is planned, including visits to and events at iconic places of interest in Manchester. The formal dinner will be at the Midlands Hotel (https://themidlandhotel.co.uk/) and an interactive session on sustainable nutrition (MetMUnch http://metmunch.com/) will precede a pub-crawl. Please watch this space for more information.

Interested in presenting at our conference?

Submissions should be written from a strong technical background and should clearly demonstrate a familiarity with the related work and field. Further information can be found on https://www2.mmu.ac.uk/sste/about-us/events/detail/index.php?id=8763.

 

Interested in EXIBITING at / SPONSORING our conference?

 The organising committee invites you to participate as a cooperate sponsor to ensure your visibility at this prestigious conference and to provide an excellent opportunity to network and market your company / agency. Please find further information here: https://www2.mmu.ac.uk/sste/about-us/events/detail/index.php?id=8763 OR contact the SEGH 2019 chair at s.potgieter@mmu.ac.uk  

Additional information (accommodation, travelling to the conference, registrations options and fees, etc.) will be available shortly via our website, with registration opening in the autumn.

We look forward to welcoming you to Manchester, UK.


Event contact

Dr Sanja Potgieter-Vermaak

S.Potgieter@mmu.ac.uk

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.