SEGH Articles

SEGH 2015: a PhD researchers perspective

15 October 2015
Dan Middleton, a PhD student from the University of Manchester, based at the Centre for Environmental Geochemistry at the British Geological Survey, shares his account of the conference proceedings.


June saw the 31st International Conference of the Society for Environmental Geochemistry and hosted by the State Geological Institute of Dionýz Štúr (SGIDŠ) in Bratislava, Slovak Republic. Dan Middleton, a BUFI funded PhD student from the University of Manchester, based at the Centre for Environmental Geochemistry at the British Geological Survey, shares his account of the conference proceedings.

The coming together of our scientific community to disseminate and share recent and ongoing research findings is, in my opinion, a vital aspect of the development process of our rapidly growing field. Our community in particular is a relatively tight-knit group compared to the core scientific disciplines and one which crosses many boundaries, making networking opportunities such as SEGH 2015 essential for sharing expertise and gaining contacts across broad skill sets. A small community it may be, but nevertheless, more than 80 delegates from 24 countries covering 4 continents descended on the Holiday Inn, Bratislava to fuel a fruitful showcase of projects covering  themes of analytical chemistry, geochemistry, environmental epidemiology and medical geology to name but a few.

 

Of particular interest to me were the health related topics, as they bridge the gap between measurements of inorganic and organic substances in our environment and how they affect our well-being, both detrimentally and beneficially. This matter was addressed early on by Prof. Stanislav Rapant, hosting the event, in his opening presentation. Using a geochemical baseline survey spanning the whole of the Slovak Republic, Prof Rapant and colleagues from SGIDŠ were able to link concentrations of calcium (Ca) and magnesium (Mg) in drinking water to health statistics of cardiovascular disease (CVD), finding an inverse correlation between exposure and outcome. This research highlighted the first of two take-home messages for me personally – drinking water chemistry is often studied in the light of excess concentrations of chemical elements (I myself gave a presentation on arsenic (As) in UK private water supplies) but of equal importance to human health is ensuring a sufficient supply of the elements that underpin key physiological mechanisms, a point reinforced by Dr Alex Stewart in his talk on the negative health implications of iodine (I) deficiency.

 

BGS’s very own Dr Mark Cave was in attendance and presented a keynote lecture on findings from a recent project examining the links between London’s soil geochemistry and health related deprivation indices. Mark found that the while unemployment showed the strongest link with detrimental health outcomes, tin (Sn) in soils showed a curious relationship out of the elements studied. This relationship requires further investigation as the causal link between the two variables in not established, however the study demonstrates the power of computer based statistical modelling, in this case the random forest method, in unlocking the secrets of large multivariate datasets.

Another standout talk was that of Dr Munir Zia from the Fauji Fertilizer Company in Pakistan, who presented collaborate research with BGS on potentially harmful elements and dietary minerals in vegetable crops grown in wastewater irrigated soils. Dr Zia used a multitude of techniques to measure both the total and bioaccessible concentrations of analytes in soil and vegetable samples as well as estimating daily intake rates based on literature derived figures and comparing with existing guidance values. For me this highlighted the importance of using an interdisciplinary approach to research problems such as these and addressing the question from a number of angles. This allows us to not only quantify the chemical composition of the media we study, but begin to explore the potential impacts that these compositions may or may not have on our health.

This leads me to the second take-home message of the conference. As geochemists, analytical chemists and environmental scientists, we have an abundance of instrumental techniques at our disposal that enable us to generate quantitative chemical data across a diverse range of samples. What many of us lack in our armoury is the medical and epidemiological expertise to compliment such findings. Environmental Geochemistry and Health is an ever important field and as researchers we need to make sure that both sides of the discipline are maintained. This will be achieved through the coming together of those from both the physical and medical sciences and in particular through the continued engagement of the latter. Furthermore, the personal development of skills outside our respective backgrounds will also aid in forming an adhesive bond between the two factions and promote research that gets closer to answering the question of how our environment impacts our health.

Overall, another worthwhile and insightful meeting that demonstrated the ongoing efforts of our community to engage in diverse research problems using techniques, both analytically and statistically, that are cutting-edge and at the forefront of our field. A big thank you to organisers and delegates alike for making SEGH 2015 a memorable event as we look towards Brussels 2016.  

Daniel Middleton, PhD Researcher

University of Manchester and British Geological Survey

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.