SEGH Articles

SEGH 2015: a PhD researchers perspective

15 October 2015
Dan Middleton, a PhD student from the University of Manchester, based at the Centre for Environmental Geochemistry at the British Geological Survey, shares his account of the conference proceedings.


June saw the 31st International Conference of the Society for Environmental Geochemistry and hosted by the State Geological Institute of Dionýz Štúr (SGIDŠ) in Bratislava, Slovak Republic. Dan Middleton, a BUFI funded PhD student from the University of Manchester, based at the Centre for Environmental Geochemistry at the British Geological Survey, shares his account of the conference proceedings.

The coming together of our scientific community to disseminate and share recent and ongoing research findings is, in my opinion, a vital aspect of the development process of our rapidly growing field. Our community in particular is a relatively tight-knit group compared to the core scientific disciplines and one which crosses many boundaries, making networking opportunities such as SEGH 2015 essential for sharing expertise and gaining contacts across broad skill sets. A small community it may be, but nevertheless, more than 80 delegates from 24 countries covering 4 continents descended on the Holiday Inn, Bratislava to fuel a fruitful showcase of projects covering  themes of analytical chemistry, geochemistry, environmental epidemiology and medical geology to name but a few.

 

Of particular interest to me were the health related topics, as they bridge the gap between measurements of inorganic and organic substances in our environment and how they affect our well-being, both detrimentally and beneficially. This matter was addressed early on by Prof. Stanislav Rapant, hosting the event, in his opening presentation. Using a geochemical baseline survey spanning the whole of the Slovak Republic, Prof Rapant and colleagues from SGIDŠ were able to link concentrations of calcium (Ca) and magnesium (Mg) in drinking water to health statistics of cardiovascular disease (CVD), finding an inverse correlation between exposure and outcome. This research highlighted the first of two take-home messages for me personally – drinking water chemistry is often studied in the light of excess concentrations of chemical elements (I myself gave a presentation on arsenic (As) in UK private water supplies) but of equal importance to human health is ensuring a sufficient supply of the elements that underpin key physiological mechanisms, a point reinforced by Dr Alex Stewart in his talk on the negative health implications of iodine (I) deficiency.

 

BGS’s very own Dr Mark Cave was in attendance and presented a keynote lecture on findings from a recent project examining the links between London’s soil geochemistry and health related deprivation indices. Mark found that the while unemployment showed the strongest link with detrimental health outcomes, tin (Sn) in soils showed a curious relationship out of the elements studied. This relationship requires further investigation as the causal link between the two variables in not established, however the study demonstrates the power of computer based statistical modelling, in this case the random forest method, in unlocking the secrets of large multivariate datasets.

Another standout talk was that of Dr Munir Zia from the Fauji Fertilizer Company in Pakistan, who presented collaborate research with BGS on potentially harmful elements and dietary minerals in vegetable crops grown in wastewater irrigated soils. Dr Zia used a multitude of techniques to measure both the total and bioaccessible concentrations of analytes in soil and vegetable samples as well as estimating daily intake rates based on literature derived figures and comparing with existing guidance values. For me this highlighted the importance of using an interdisciplinary approach to research problems such as these and addressing the question from a number of angles. This allows us to not only quantify the chemical composition of the media we study, but begin to explore the potential impacts that these compositions may or may not have on our health.

This leads me to the second take-home message of the conference. As geochemists, analytical chemists and environmental scientists, we have an abundance of instrumental techniques at our disposal that enable us to generate quantitative chemical data across a diverse range of samples. What many of us lack in our armoury is the medical and epidemiological expertise to compliment such findings. Environmental Geochemistry and Health is an ever important field and as researchers we need to make sure that both sides of the discipline are maintained. This will be achieved through the coming together of those from both the physical and medical sciences and in particular through the continued engagement of the latter. Furthermore, the personal development of skills outside our respective backgrounds will also aid in forming an adhesive bond between the two factions and promote research that gets closer to answering the question of how our environment impacts our health.

Overall, another worthwhile and insightful meeting that demonstrated the ongoing efforts of our community to engage in diverse research problems using techniques, both analytically and statistically, that are cutting-edge and at the forefront of our field. A big thank you to organisers and delegates alike for making SEGH 2015 a memorable event as we look towards Brussels 2016.  

Daniel Middleton, PhD Researcher

University of Manchester and British Geological Survey

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.