SEGH Articles

SEGH 2015: a PhD researchers perspective

15 October 2015
Dan Middleton, a PhD student from the University of Manchester, based at the Centre for Environmental Geochemistry at the British Geological Survey, shares his account of the conference proceedings.


June saw the 31st International Conference of the Society for Environmental Geochemistry and hosted by the State Geological Institute of Dionýz Štúr (SGIDŠ) in Bratislava, Slovak Republic. Dan Middleton, a BUFI funded PhD student from the University of Manchester, based at the Centre for Environmental Geochemistry at the British Geological Survey, shares his account of the conference proceedings.

The coming together of our scientific community to disseminate and share recent and ongoing research findings is, in my opinion, a vital aspect of the development process of our rapidly growing field. Our community in particular is a relatively tight-knit group compared to the core scientific disciplines and one which crosses many boundaries, making networking opportunities such as SEGH 2015 essential for sharing expertise and gaining contacts across broad skill sets. A small community it may be, but nevertheless, more than 80 delegates from 24 countries covering 4 continents descended on the Holiday Inn, Bratislava to fuel a fruitful showcase of projects covering  themes of analytical chemistry, geochemistry, environmental epidemiology and medical geology to name but a few.

 

Of particular interest to me were the health related topics, as they bridge the gap between measurements of inorganic and organic substances in our environment and how they affect our well-being, both detrimentally and beneficially. This matter was addressed early on by Prof. Stanislav Rapant, hosting the event, in his opening presentation. Using a geochemical baseline survey spanning the whole of the Slovak Republic, Prof Rapant and colleagues from SGIDŠ were able to link concentrations of calcium (Ca) and magnesium (Mg) in drinking water to health statistics of cardiovascular disease (CVD), finding an inverse correlation between exposure and outcome. This research highlighted the first of two take-home messages for me personally – drinking water chemistry is often studied in the light of excess concentrations of chemical elements (I myself gave a presentation on arsenic (As) in UK private water supplies) but of equal importance to human health is ensuring a sufficient supply of the elements that underpin key physiological mechanisms, a point reinforced by Dr Alex Stewart in his talk on the negative health implications of iodine (I) deficiency.

 

BGS’s very own Dr Mark Cave was in attendance and presented a keynote lecture on findings from a recent project examining the links between London’s soil geochemistry and health related deprivation indices. Mark found that the while unemployment showed the strongest link with detrimental health outcomes, tin (Sn) in soils showed a curious relationship out of the elements studied. This relationship requires further investigation as the causal link between the two variables in not established, however the study demonstrates the power of computer based statistical modelling, in this case the random forest method, in unlocking the secrets of large multivariate datasets.

Another standout talk was that of Dr Munir Zia from the Fauji Fertilizer Company in Pakistan, who presented collaborate research with BGS on potentially harmful elements and dietary minerals in vegetable crops grown in wastewater irrigated soils. Dr Zia used a multitude of techniques to measure both the total and bioaccessible concentrations of analytes in soil and vegetable samples as well as estimating daily intake rates based on literature derived figures and comparing with existing guidance values. For me this highlighted the importance of using an interdisciplinary approach to research problems such as these and addressing the question from a number of angles. This allows us to not only quantify the chemical composition of the media we study, but begin to explore the potential impacts that these compositions may or may not have on our health.

This leads me to the second take-home message of the conference. As geochemists, analytical chemists and environmental scientists, we have an abundance of instrumental techniques at our disposal that enable us to generate quantitative chemical data across a diverse range of samples. What many of us lack in our armoury is the medical and epidemiological expertise to compliment such findings. Environmental Geochemistry and Health is an ever important field and as researchers we need to make sure that both sides of the discipline are maintained. This will be achieved through the coming together of those from both the physical and medical sciences and in particular through the continued engagement of the latter. Furthermore, the personal development of skills outside our respective backgrounds will also aid in forming an adhesive bond between the two factions and promote research that gets closer to answering the question of how our environment impacts our health.

Overall, another worthwhile and insightful meeting that demonstrated the ongoing efforts of our community to engage in diverse research problems using techniques, both analytically and statistically, that are cutting-edge and at the forefront of our field. A big thank you to organisers and delegates alike for making SEGH 2015 a memorable event as we look towards Brussels 2016.  

Daniel Middleton, PhD Researcher

University of Manchester and British Geological Survey

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.