SEGH Articles

SEGH Data Privacy Policy

01 June 2018
We are preparing for new General Data Protection Regulations (GDPR). Please read further for SEGH handling of member information.

SEGH Data Protection Policy

Who we are:

The Society for Environmental Geochemistry and Health provides a forum for scientists from various disciplines to work together in understanding the interaction between the geochemical environment and the health of plants, animals and humans.

Further information can be found at: www.segh.net

What personal data we collect:

We collect personal data from subscribers comprising name, E-mail address and affiliation. We also collect the same information from individuals who attend our annual conference and other SEGH sponsored meetings.

What will we do with the data:

We will use this data to send subscribers email updates about SEGH, including upcoming events, the latest news articles on the website and other relevant information. For information held centrally by SEGH we will not share your data with other organisations.  The exception will be for a conference, for which specific permission will be sought by the conference host to share contact information with sponsors.

How we will store the data:

We will store your data in secure web hosting software, administered by our Webmaster, Membership Secretary, Secretary and President. We do not store financial details using the web hosting software.  Subscriptions are handled by off-site secure payments through SagePay, for which access to payment records are currently restricted to the Membership Secretary, Secretary and President.

How can i submit a 'Subject Access Request'?

You can submit a subject access request by E-mail to seghmembership@gmail.com

Will this privacy policy be updated?

We regularly review our policies, including this privacy policy, and may make changes from time to time.

Permission to maintain membership details

 Members can at any time request to be removed from the SEGH member/mailing list by emailing seghmembership@gmail.com .

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa 2018-11-11

    Abstract

    Polycyclic aromatic hydrocarbons are amongst the pollutants of major concern in the terrestrial and aquatic habitats. They are mostly characterised by carcinogenic and non-carcinogenic effects. Distribution and potential health risks of sixteen priority PAHs in the water and sediment samples collected between December 2015 and June 2016 from Algoa Bay, South Africa, were evaluated. Water and sediment samples collected were extracted with liquid–liquid and soxhlet extraction methods, respectively, and then cleaned up using glass column loaded with silica gel. Final concentrations of the target PAHs were determined by gas chromatography interfaced with flame ionization detector. Results indicated that individual PAH concentrations in surface water, bottom water and sediment samples ranged from not detected (ND) to 24.66 µg/L, ND to 22.81 µg/L and ND to 5.23 mg/kg correspondingly. Total PAHs concentrations varied as 12.78–78.94 µg/L, 1.20–90.51 µg/L and 1.17–10.47 mg/kg in the three environmental matrices in that order. The non-carcinogenic risk was generally below 1, whereas risk indices (dermal contact) were above the acceptable limit of 1 × 10−4 in the water column, suggesting possible carcinogenic effects to humans, with adults being the most vulnerable. Similarly, highest contributions to TEQs and MEQs in the sediments were made by benzo(a)pyrene and dibenzo(a,h)anthracene, the two most toxic congeners, signifying the possibility of carcinogenicity and mutagenicity in humans. Diagnostic ratios of PAHs reflect a prevailing pyrogenic input all through. The pollution was albeit moderate, yet regular check is recommended to ensure safe and healthy environment for human and aquatic lives.

  • Potential exposure to metals and health risks of metal intake from Tieguanyin tea production in Anxi, China 2018-11-10

    Abstract

    The metal content of Tieguanyin tea from Anxi, Southeast China, was studied. Leaching experiments were designed based on the local tea-drinking habits, and tea infusions were prepared using three types of water and two methods of soaking tea. Twelve metals (Cd, As, Cr, Pb, Se, Sb, Ag, Tl, Cu, Zn, Be, and Ba) were measured by inductively coupled plasma mass spectrometry (ICP-MS), and a human health risk assessment was performed. The results showed that the quality of water used for steeping tea has a direct effect on the leaching concentrations of metals in the tea infusion and this effect can be reduced by using pure water or commercially available drinking water. Further, the two tea-soaking methods used by local residents can reduce the metal intake. The health risk assessment determined that the carcinogenic risk values of Cr, As, and Pb (Cr > Pb > As) were within an acceptable range (10−7–10−4); therefore, the concentrations of these metals in tea infusions do not pose substantial carcinogenic risk to tea drinkers. The results also indicate that the high concentrations of Tl in the tea infusions pose a substantial noncarcinogenic risk and may result from the dissolution characteristics of Tl and the water quality.

  • Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM 10 and road deposited dust in Ahvaz metropolis of Iran 2018-11-09

    Abstract

    The objective of this study was to compare the characteristics of polycyclic aromatic hydrocarbons (PAHs) in PM10 and road dust samples, as well as to identify and quantify the contributions of each source profile using the positive matrix factorization (PMF) receptor model. Health risk assessment was carried out using toxic equivalency factors and incremental lifetime cancer risk (ILCR), which quantitatively estimate the exposure risk for age-specific groups. PM10 samples were collected on PTFE filters in the metropolitan area of Ahvaz. Road dust samples were also collected from all over the urban areas with different land uses. Total PAH concentrations in PM10 and road dust samples were 0.5–25.5 ng/m3 and 49.3–16,645 µg/kg, respectively. Pyrene was the highest PAH in the PM10 profile, whereas fluoranthene became the highest PAH in the road dust. Abundance of benzo[ghi]perylene at PM10 and road dust samples suggested a source indicator for traffic emissions. The results demonstrate that in 36.5% of samples, PM10 concentrations exceed the maximum concentration level recommended by EPA. A multiple linear regression model was used to estimate the influence of meteorological parameters (temperature, wind speed, and relative humidity) on buildup of PAHs. All of PAH species show higher concentrations during the cold and typical days rather than the dust event days and warm periods. PMF analysis showed that vehicular emissions (50.6%) and industrial activities (especially steel industries) (30.4%) were first two sources of PAHs bounded with PM10, followed by diesel emissions (11.6%) and air–soil exchange (7.4%). For road dust samples, three common sources were also identified: vehicular traffic (48%), industrial activities (42.3%), and petrogenic sources (9.7%), in line with that of diagnostic molecular ratios results. According to the results of health risk assessment model, the ILCR of exposure to PAHs associated with PM10 and road-deposited dust was higher than the guidelines of USEPA, indicating high carcinogenic risk.