SEGH Articles

SEGH Member participated in the Antarctic Circumpolar Expedition

02 July 2017
Francois De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition

François De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition. From December 2016 to March 2017, scientific teams from all over the world joined into an unprecedented expedition around Antarctica. From biology to climatology to oceanography, researchers from 22 selected projects worked on a number of interrelated fields revolving around Antarctica.


François De Vleeschouwer is involved in a British Antarctic Survey-supervised project dealing with « Measuring the changes in the ocean’s capacity to absorb CO2 ». Concentrations of CO2 in the atmosphere have increased since 1750 AD as a result of human activity. This is linked to warming of the atmosphere and oceans, changes in climate, recession of ice sheets and sea level rise. More than one quarter of this CO2 is absorbed by the oceans; the Southern Ocean accounting for 43%. The capacity of the Southern Ocean to absorb CO2 has recently been limited (according to some models) by an increase in the strength of the Southern Hemisphere Westerly Winds (SHW), which draw CO2 saturated waters back to the surface. This will potentially drive up atmospheric greenhouse gases and accelerate rates of global warming.Reconstructing past changes in the SHW and their impact on the oceanic CO2 sink is therefore a major priority for palaeoclimate science.


François De Vleeschouwer participated to the leg 2 of the ACE navigation from Hobart, Tasmania to Punta Arenas, Chile. After an unfortunate storm that obliged the expedition to cancel the sampling at Macquarie Island, the boat navigated throuhgh Antarctic waters to then cross the Drake’s Passage. F. De Vleeschouwer sampled soils, mosses and peatlands on various islands from the Antarctic (Scott, Maher, Lauft, Siple) and sub-Antarctic (Diego Ramirez Archipelago).


The main objective of this project is to determine the Holocene (last 12000 yrs) changes in the strength of the SHW over the Southern Ocean by generating records of wind-driven aerosols and other proxies in sediment records from lakes and bogs on the west coasts of sub-Antarctic islands and, These data will be further used in global climate models to test if past changes in the SHW explain past variations in atmospheric CO2.

Further information can be found on :


Francois de Vleeschouwer, CNRS, Toulouse, France

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of Pb, Cd and Hg soil contamination and its potential to cause cytotoxic and genotoxic effects in human cell lines (CaCo-2 and HaCaT) 2018-01-23


    Soil contamination by heavy metals is a serious global environmental problem, especially for developing countries. A large number of industrial plants, which continually pollute the environment, characterize Tuzla Canton, Bosnia and Herzegovina. The aim of this study was to assess the level of soil pollution by heavy metals and to estimate cytotoxicity and genotoxicity of soil leachates from this area. Lead (Pb), cadmium (Cd) and mercury (Hg) were analyzed by ICP-AES and AAS. Soil contamination was assessed using contamination factor, degree of contamination, geoaccumulation index and pollution load index. To determine the connection of variables and understanding their origin in soils, principal component analysis (PCA) and cluster analysis (CA) were used. The results indicate that Cd and Hg originated from natural and anthropogenic activities, while Pb is of anthropogenic origin. For toxicity evaluation, CaCo-2 and HaCaT cells were used. PrestoBlue assay was used for cytotoxicity testing, and γH2A.X for genotoxicity evaluation. Concerning cytotoxicity, Cd and Hg had a positive correlation with cytotoxicity in HaCaT cells, but only Hg induced cytotoxicity in CaCo-2 cells. We also demonstrate that soil leachates contaminated by heavy metals can induce genotoxicity in both used cell lines. According to these results, combining bioassays with standard physicochemical analysis can be useful for evaluating environmental and health risks more accurately. These results are important for developing proper management strategies to decrease pollution. This is one of the first studies from this area and an important indication of soil quality in Southeast Europe.

    Graphical Abstract

  • Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China 2018-01-19


    As an accumulation of solid organic and inorganic pollutant particles on outdoor ground surfaces, road dust is an important carrier of heavy metal contaminants and can be a valuable medium for characterizing urban environmental quality. Because the dusts can be an important source of atmospheric particles and take impact on human health, the aim of this study described in detail the mineralogical characteristics, morphology, and heavy metal content of road dust from Xuanwei and Fuyuan, locations with high lung cancer incidence. Our results show that the average concentrations of heavy metals in road dust were higher than their background values. Higher concentrations of heavy metals were found in the magnetic fractions (MFs) than in the non-magnetic fractions (NMFs). Magnetic measurements revealed high magnetic susceptibility values in the road dust samples, and the dominant magnetic carrier was magnetite. The magnetic grains were predominantly pseudo-single domain, multi-domain, and coarse-grained stable single domains (coarse SSD) in size. SEM/XRD analysis identified two groups of magnetic particles: spherules and angular/aggregate particles. Hazard index (HI) values for adults exposure to road dust samples, including MF, Bulk, and NMF, in both areas were lower or close to safe levels, while HI values for childhood exposure to magnetic fractions in both areas were very close or higher than safe levels. Cancer risks from road dust exposure in both areas were in the acceptable value range.

  • Lead sorption characteristics of various chicken bone part-derived chars 2018-01-18


    Recycling food waste for beneficial use is becoming increasingly important in resource-limited economy. In this study, waste chicken bones of different parts from restaurant industry were pyrolyzed at 600 °C and evaluated for char physicochemical properties and Pb sorption characteristics. Lead adsorption isotherms by different chicken bone chars were carried out with initial Pb concentration range of 1–1000 mg L−1 at pH 5. The Pb adsorption data were better described by the Langmuir model (R2 = 0.9289–0.9937; ARE = 22.7–29.3%) than the Freundlich model (R2 = 0.8684–0.9544; ARE = 35.4–72.0%). Among the chars derived from different chicken bone parts, the tibia bone char exhibited the highest maximum Pb adsorption capacity of 263 mg g−1 followed by the pelvis (222 mg g−1), ribs (208 mg g−1), clavicle (179 mg g−1), vertebrae (159 mg g−1), and humerus (135 mg g−1). The Pb adsorption capacities were significantly and positively correlated with the surface area, phosphate release amount, and total phosphorus content of chicken bone chars (r ≥ 0.9711). On the other hand, approximately 75–88% of the adsorbed Pb on the chicken bone chars was desorbable with 0.1 M HCl, indicating their recyclability for reuse. Results demonstrated that chicken bone char could be used as an effective adsorbent for Pb removal in wastewater.