SEGH Articles

SEGH Member participated in the Antarctic Circumpolar Expedition

02 July 2017
Francois De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition


François De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition. From December 2016 to March 2017, scientific teams from all over the world joined into an unprecedented expedition around Antarctica. From biology to climatology to oceanography, researchers from 22 selected projects worked on a number of interrelated fields revolving around Antarctica.

 

François De Vleeschouwer is involved in a British Antarctic Survey-supervised project dealing with « Measuring the changes in the ocean’s capacity to absorb CO2 ». Concentrations of CO2 in the atmosphere have increased since 1750 AD as a result of human activity. This is linked to warming of the atmosphere and oceans, changes in climate, recession of ice sheets and sea level rise. More than one quarter of this CO2 is absorbed by the oceans; the Southern Ocean accounting for 43%. The capacity of the Southern Ocean to absorb CO2 has recently been limited (according to some models) by an increase in the strength of the Southern Hemisphere Westerly Winds (SHW), which draw CO2 saturated waters back to the surface. This will potentially drive up atmospheric greenhouse gases and accelerate rates of global warming.Reconstructing past changes in the SHW and their impact on the oceanic CO2 sink is therefore a major priority for palaeoclimate science.

 

François De Vleeschouwer participated to the leg 2 of the ACE navigation from Hobart, Tasmania to Punta Arenas, Chile. After an unfortunate storm that obliged the expedition to cancel the sampling at Macquarie Island, the boat navigated throuhgh Antarctic waters to then cross the Drake’s Passage. F. De Vleeschouwer sampled soils, mosses and peatlands on various islands from the Antarctic (Scott, Maher, Lauft, Siple) and sub-Antarctic (Diego Ramirez Archipelago).

 

The main objective of this project is to determine the Holocene (last 12000 yrs) changes in the strength of the SHW over the Southern Ocean by generating records of wind-driven aerosols and other proxies in sediment records from lakes and bogs on the west coasts of sub-Antarctic islands and, These data will be further used in global climate models to test if past changes in the SHW explain past variations in atmospheric CO2.

Further information can be found on : http://spi-ace-expedition.ch/

 

Francois de Vleeschouwer, CNRS, Toulouse, France

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Total arsenic concentrations in Chinese children’s urine by different geographic locations, ages, and genders 2018-06-01

    Abstract

    Little is known about the variation of Chinese children’s exposure to arsenic by geography, age, gender, and other potential factors. The main objective of this study was to investigate the total arsenic concentration in Chinese children’s urine by geographic locations, ages, and genders. In total, 259 24-h urine samples were collected from 210 2- to 12-year-old children in China and analyzed for total arsenic and creatinine concentrations. The results showed that the upper limit (upper limit of the 90% confidence interval for the 97.5 fractile) was 27.51 µg/L or 55.88 µg/g creatinine for Chinese children. The total urinary arsenic levels were significantly different for children in Guangdong, Hubei, and Gansu provinces (P < 0.05), where the upper limits were 24.29, 58.70, and 44.29 µg/g creatinine, respectively. In addition, the total urinary arsenic levels were higher for 2- to 7-year-old children than for 7- to 12-year-old children (P < 0.05; the upper limits were 59.06 and 44.29 µg/g creatinine, respectively) and higher for rural children than for urban children (P < 0.05; the upper limits were 59.06 and 50.44 µg/g creatinine, respectively). The total urinary arsenic levels for boys were not significantly different from those for girls (P > 0.05), although the level for boys (the upper limit was 59.30 µg/g) was slightly higher than that for girls (the upper limit was 58.64 µg/g creatinine). Because the total urinary arsenic concentrations are significantly different for general populations of children in different locations and age groups, the reference level of total urinary arsenic might be dependent on the geographic site and the child’s age.

  • The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting 2018-06-01

    Abstract

    The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting were investigated. During the whole meeting, nine PM2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM2.5 was 122.28 μg m−3. NO3 , NH4 +, SO4 2− accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl, all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m−3, with an average concentration of 52.51 μg m−3, which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m−3, respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM2.5. The directly dispersing by mixing layer height increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, and these are the only two key removing mechanisms of PM2.5 in Xinxiang during the meeting.

  • Review of total suspended particles (TSP) and PM 2.5 concentration variations in Asia during the years of 1998–2015 2018-06-01

    Abstract

    In Asian countries such as China, Malaysia, Pakistan, India, Taiwan, Korea, Japan and Hong Kong, ambient air total suspended particulates and PM2.5 concentration data were collected and discussed during the years of 1998–2015 in this study. The aim of the present study was to (1) investigate and collect ambient air total suspended particulates (TSP) and PM2.5 concentrations for Asian countries during the past two decades. (2) Discuss, analyze and compare those particulates (TSP and PM2.5) annual concentration distribution trends among those Asian countries during the past two decades. (3) Test the mean concentration differences in TSP and PM2.5 among the Asian countries during the past decades. The results indicated that the mean TSP concentration order was shown as China > Malaysia > Pakistan > India > Taiwan > Korea > Japan. In addition, the mean PM2.5 concentration order was shown as Vietnam > India > China > Hong Kong > Mongolia > Korea > Taiwan > Japan and the average percentages of PM2.5 concentrations for Taiwan, China, Japan, Korea, Hong Kong, Mongolia and Other (India and Vietnam) were 8, 21, 6, 8, 14, 13 and 30%, respectively, during the past two decades. Moreover, t test results revealed that there were significant mean TSP and PM2.5 concentration differences for either China or India to any of the countries such as Taiwan, Korea and Japan in Asia during the past two decades for this study. Noteworthy, China and India are both occupied more than 60% of the TSP and PM2.5 particulates concentrations out of all the Asia countries. As for Taiwan, the average PM2.5 concentration displayed increasing trend in the years of 1998–1999. However, it showed decreasing trend in the years of 2000–2010. As for Korea, the average PM2.5 concentrations showed decreasing trend during the years of 2001–2013. Finally, the average PM2.5 concentrations for Mongolia displayed increasing trend in the years of 2004–2013.