SEGH Articles

SEGH Member participated in the Antarctic Circumpolar Expedition

02 July 2017
Francois De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition

François De Vleeschouwer, researcher at EcoLab, (CNRS, Toulouse France) and SEGH secretary, had the opportunity to embark onboard the RV Akademik Treshnikov to participate in the ACE Expedition. From December 2016 to March 2017, scientific teams from all over the world joined into an unprecedented expedition around Antarctica. From biology to climatology to oceanography, researchers from 22 selected projects worked on a number of interrelated fields revolving around Antarctica.


François De Vleeschouwer is involved in a British Antarctic Survey-supervised project dealing with « Measuring the changes in the ocean’s capacity to absorb CO2 ». Concentrations of CO2 in the atmosphere have increased since 1750 AD as a result of human activity. This is linked to warming of the atmosphere and oceans, changes in climate, recession of ice sheets and sea level rise. More than one quarter of this CO2 is absorbed by the oceans; the Southern Ocean accounting for 43%. The capacity of the Southern Ocean to absorb CO2 has recently been limited (according to some models) by an increase in the strength of the Southern Hemisphere Westerly Winds (SHW), which draw CO2 saturated waters back to the surface. This will potentially drive up atmospheric greenhouse gases and accelerate rates of global warming.Reconstructing past changes in the SHW and their impact on the oceanic CO2 sink is therefore a major priority for palaeoclimate science.


François De Vleeschouwer participated to the leg 2 of the ACE navigation from Hobart, Tasmania to Punta Arenas, Chile. After an unfortunate storm that obliged the expedition to cancel the sampling at Macquarie Island, the boat navigated throuhgh Antarctic waters to then cross the Drake’s Passage. F. De Vleeschouwer sampled soils, mosses and peatlands on various islands from the Antarctic (Scott, Maher, Lauft, Siple) and sub-Antarctic (Diego Ramirez Archipelago).


The main objective of this project is to determine the Holocene (last 12000 yrs) changes in the strength of the SHW over the Southern Ocean by generating records of wind-driven aerosols and other proxies in sediment records from lakes and bogs on the west coasts of sub-Antarctic islands and, These data will be further used in global climate models to test if past changes in the SHW explain past variations in atmospheric CO2.

Further information can be found on :


Francois de Vleeschouwer, CNRS, Toulouse, France

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01


    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01


    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01


    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.