SEGH Articles

SEGH Representation - Scientific Events in Pakistan

10 January 2016
Dr Munir Zia gives an update on SEGH representation at two scientific events during 2015 in Pakistan

 

Dr Munir Zia represented SEGH at two of the following events during 2015 in Pakistan:

1. International Conference on Soil Sustainability and Food Security held at the University of Agriculture in Faisalabad (Nov 15-17)

2. International Workshop on Current status of fertilizer use in Pakistan (Nov 29-Dec 01)

Dr Munir Zia, R&D Coordinator for the Fauji Fertilizer Company in Pakistan, while representing SEGH, delivered an invited talk on “Health risk assessment of potentially harmful elements (PHEs) and dietary minerals (DMs) from soils and vegetables irrigated with wastewater” at the International Conference on Soil Sustainability and Food Security held at the University of Agriculture in Faisalabad, Pakistan. Scientists from Germany, Australia, and UAE also participated in the event that was inaugurated by the Federal Minister for Food Security.

 

Dr Munir Zia also represented SEGH at an International Workshop on  the Current status of Fertilizer use in Pakistan. The workshop in November 2015 was organised by the University of Agriculture in Faisalabad and the International Centre for Agricultural Research in Dry Areas (ICARDA) under the framework of the Consortium Research Programme on Water, Land and Ecosystems.

 

 

The main concern in agricultural production systems are the inefficient use of fertilizers and their impact on the environment. Improving fertilizer use efficiency requires a multi-disciplinary, multi-pronged approach in fertilizer and irrigation management, breeding, extension and policy interventions. The contrasting situation is the underuse of fertilisers where farmers are not achieving optimal yields because they cannot get access to or afford fertilizers. This workshop will highlight the problem of fertilizer mismanagement; its over, inappropriate and under use, and losses due to agricultural activities. This activity will help in the identification of areas for policy intervention to improve fertilizer distribution and management or regulate its use.

by Dr Munir Zia

R&D Coordinator Fauji Fertilizer Company, Pakistan

SEGH Representative in Pakistan

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country 2017-09-19

    Abstract

    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.

  • Erratum to: Preliminary assessment of surface soil lead concentrations in Melbourne, Australia 2017-09-11
  • In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute? 2017-09-02

    Abstract

    Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.