SEGH Articles

The new SEGH President: Chaosheng Zhang

24 September 2015
Dr Chaosheng Zhang formally took over the position of President of SEGH in June at SEGH 2015 in Bratislava.

The SEGH 2015 conference in Bratislava was the platform for Professor Andrew Hursthouse to hand over the position of SEGH President to Dr Chaosheng Zhang.  Chaosheng has been involved in the SEGH for more than 10 years as a member, regional representative of Europe and active on the International Board. 

Dr Chaosheng Zhang teaches at the National University of Ireland, Galway. He obtained his B.Sc. in 1989 from Peking University and his PhD in 1995 from Chinese Academy of Sciences. Dr. Zhang’s academic background covers both geographical information system (GIS) and environmental geochemistry. His research interest focuses on spatial analysis of environmental variables, especially metals and nutrients in soils and soil organic carbon, using GIS, geostatistics and other spatial statistical techniques. One of the current research directions of Dr. Zhang is spatial analysis of environment and health. Dr. Zhang has published more than 100 papers in peer-reviewed journals. He is a reviewer for more than 40 international journals.

We take the opportunity to ask a few questions of Chaosheng to gain an insight into his experience as an environmental scientist, member of SEGH and his hopes for the future of SEGH.

What are your hopes for the future of SEGH and how do you intend to lead the SEGH forward as the new President?

SEGH is a well-established international society with a fairly long history. Even though it is “old” in age, I hope it remains young and energetic and keeps growing all the time, especially during the current time when we face many new challenges of environment and health with increasing pressure on the environment for higher quality of our life.

As the new president of SEGH, I will work together with the executive board and all SEGH members to build a stronger and sustainable society and to maximize the benefits for our members. We will focus our efforts on the following areas: to broaden our membership from the current Europe focused geographical coverage to a wider and more even spatial coverage of the world; to encourage international experts working in wider areas of environment and health to join SEGH; to foster the establishment of new regional sections and support the activities of all the regional sections; and to encourage young researchers to join SEGH and to actively attend its activities.

What are the important challenges that face SEGH in the future?

As far as I can see, the most important challenge for SEGH is its natural “aging” as a society with a history of more than 40 years. Most of our members stay in SEGH mainly because of their long-term commitment to the society and in fact they regard SEGH as their home. This is a good aspect for SEGH of course and we appreciate and respect such a relationship. However, we have to acknowledge that there are relatively fewer young members and the current members are mainly from the UK and the USA. Therefore we will need to recruit more members especially those who are at their early stage of professional life. SEGH needs “new blood”.

Another challenge is the potential competition from other international societies working in the similar areas of environment and health. It is understandable that each international society wants to maintain its own identity and to keep its own network alive. However, for an individual, due to time limit and financial constraint, one can join and be committed to limited number of international societies. Therefore, SEGH values and respects all our members who have voluntarily joined our society and we try to maximize the benefits for our members. Meanwhile, SEGH keeps our communication with other international societies to maximise our mutual benefits.

With the advent of communications technology and increasing globalisation, how do you think SEGH could reach out to the developing countries with limited resources and the emerging economic powerhouses to promote scientific collaboration across boundaries?

It is quite true that the current SEGH members are mainly from the “developed” countries, and one of main reasons is that members have to pay fees like other international societies. There are three long-established regional sections: Europe, America and Asia-Pacific. During SEGH 2015 in Bratislava a new regional group SEGH China-Ireland Consortium was officially established. The formation of regional sections or groups can be regarded as an effective way of bringing the emerging economic powerhouses and in fact “new blood” into SEGH. It is expected more international collaborations will be established through these regional sections under the umbrella of SEGH.

For the developing countries, there are quite a lot of pilot study areas in environment and health that SEGH members are interested in, for example the well-known arsenic contamination in groundwater and metals in mining areas. We will encourage more international collaborations between SEGH members from developing and developed countries with the endorsement of SEGH banner and also consider setting up regional groups covering these areas, especially Africa, Middle East and South America where SEGH is not well represented yet.

What do you think are the major scientific issues facing the society’s area of research and how could SEGH take a lead role in these?

It is quite clear to me that the main scientific issue facing the society’s area of research is the link with health. This is related to the fact that most members of the society join us with the environmental background while there is a lack of members with health background. SEGH will need to encourage more health experts, including epidemiologists and public health professionals to join our family.

Another major issue is the area of the society’s research has been mainly focused on traditional environmental geochemistry. An ideal coverage should include all the related systems in environment and health, e.g., not only the soil system, but also water, air, biology, food and socio-economy, as everything in the environment is closely related, and each component may make some contribution to the health of humans and animals.

During your scientific career, how has your membership of SEGH benefited you personally? What do you think are the advantages of early – mid – late career scientists joining SEGH?

I have joined SEGH for more than 10 years, and I have been active in attending its annual conferences. Each time when I made presentations I always tried my best to impress the audience. Through my presentations, I have made a lot of like-minded friends, specifically in the areas of data analyses and GIS mapping. Many members of SEGH have their data sets and they want to know how to analyse them in a better way. SEGH has helped me greatly in establishing my own research network and indeed helped to build my own confidence in research in my area.

For early and mid- career researchers, I would like to emphasise that networking is one of the most important ways for them to build their career. When we do research, to make sure that our research contains novelty, we have to understand the current story in the literature. An easy approach to acquire the knowledge of “the current story” is to listen to presenters, as everyone tries to highlight the importance of their own work based on the current literature. Meanwhile, face-to-face discussion with colleagues is much more efficient than reading carefully-worded published papers. Therefore, it is important for early and mid- career researchers to join an internationally leading society in their own area such as SEGH and actively attend its events especially the routine conferences.

For late career scientists, it is important to keep their knowledge updated with ever-growing new knowledge. They should be open-minded with new technologies, including new analytical equipment, new methodologies and new IT skills. Staying in SEGH will ensure to keep them “young and energetic” and mostly important, alive! 

by Dr Michael Watts, SEGH webmaster

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fertilizer usage and cadmium in soils, crops and food 2018-06-23


    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\) , \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  • Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments 2018-06-23


    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  • Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons 2018-06-22


    Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.