SEGH Articles

The new SEGH President: Chaosheng Zhang

24 September 2015
Dr Chaosheng Zhang formally took over the position of President of SEGH in June at SEGH 2015 in Bratislava.

The SEGH 2015 conference in Bratislava was the platform for Professor Andrew Hursthouse to hand over the position of SEGH President to Dr Chaosheng Zhang.  Chaosheng has been involved in the SEGH for more than 10 years as a member, regional representative of Europe and active on the International Board. 

Dr Chaosheng Zhang teaches at the National University of Ireland, Galway. He obtained his B.Sc. in 1989 from Peking University and his PhD in 1995 from Chinese Academy of Sciences. Dr. Zhang’s academic background covers both geographical information system (GIS) and environmental geochemistry. His research interest focuses on spatial analysis of environmental variables, especially metals and nutrients in soils and soil organic carbon, using GIS, geostatistics and other spatial statistical techniques. One of the current research directions of Dr. Zhang is spatial analysis of environment and health. Dr. Zhang has published more than 100 papers in peer-reviewed journals. He is a reviewer for more than 40 international journals.

We take the opportunity to ask a few questions of Chaosheng to gain an insight into his experience as an environmental scientist, member of SEGH and his hopes for the future of SEGH.

What are your hopes for the future of SEGH and how do you intend to lead the SEGH forward as the new President?

SEGH is a well-established international society with a fairly long history. Even though it is “old” in age, I hope it remains young and energetic and keeps growing all the time, especially during the current time when we face many new challenges of environment and health with increasing pressure on the environment for higher quality of our life.

As the new president of SEGH, I will work together with the executive board and all SEGH members to build a stronger and sustainable society and to maximize the benefits for our members. We will focus our efforts on the following areas: to broaden our membership from the current Europe focused geographical coverage to a wider and more even spatial coverage of the world; to encourage international experts working in wider areas of environment and health to join SEGH; to foster the establishment of new regional sections and support the activities of all the regional sections; and to encourage young researchers to join SEGH and to actively attend its activities.

What are the important challenges that face SEGH in the future?

As far as I can see, the most important challenge for SEGH is its natural “aging” as a society with a history of more than 40 years. Most of our members stay in SEGH mainly because of their long-term commitment to the society and in fact they regard SEGH as their home. This is a good aspect for SEGH of course and we appreciate and respect such a relationship. However, we have to acknowledge that there are relatively fewer young members and the current members are mainly from the UK and the USA. Therefore we will need to recruit more members especially those who are at their early stage of professional life. SEGH needs “new blood”.

Another challenge is the potential competition from other international societies working in the similar areas of environment and health. It is understandable that each international society wants to maintain its own identity and to keep its own network alive. However, for an individual, due to time limit and financial constraint, one can join and be committed to limited number of international societies. Therefore, SEGH values and respects all our members who have voluntarily joined our society and we try to maximize the benefits for our members. Meanwhile, SEGH keeps our communication with other international societies to maximise our mutual benefits.

With the advent of communications technology and increasing globalisation, how do you think SEGH could reach out to the developing countries with limited resources and the emerging economic powerhouses to promote scientific collaboration across boundaries?

It is quite true that the current SEGH members are mainly from the “developed” countries, and one of main reasons is that members have to pay fees like other international societies. There are three long-established regional sections: Europe, America and Asia-Pacific. During SEGH 2015 in Bratislava a new regional group SEGH China-Ireland Consortium was officially established. The formation of regional sections or groups can be regarded as an effective way of bringing the emerging economic powerhouses and in fact “new blood” into SEGH. It is expected more international collaborations will be established through these regional sections under the umbrella of SEGH.

For the developing countries, there are quite a lot of pilot study areas in environment and health that SEGH members are interested in, for example the well-known arsenic contamination in groundwater and metals in mining areas. We will encourage more international collaborations between SEGH members from developing and developed countries with the endorsement of SEGH banner and also consider setting up regional groups covering these areas, especially Africa, Middle East and South America where SEGH is not well represented yet.

What do you think are the major scientific issues facing the society’s area of research and how could SEGH take a lead role in these?

It is quite clear to me that the main scientific issue facing the society’s area of research is the link with health. This is related to the fact that most members of the society join us with the environmental background while there is a lack of members with health background. SEGH will need to encourage more health experts, including epidemiologists and public health professionals to join our family.

Another major issue is the area of the society’s research has been mainly focused on traditional environmental geochemistry. An ideal coverage should include all the related systems in environment and health, e.g., not only the soil system, but also water, air, biology, food and socio-economy, as everything in the environment is closely related, and each component may make some contribution to the health of humans and animals.

During your scientific career, how has your membership of SEGH benefited you personally? What do you think are the advantages of early – mid – late career scientists joining SEGH?

I have joined SEGH for more than 10 years, and I have been active in attending its annual conferences. Each time when I made presentations I always tried my best to impress the audience. Through my presentations, I have made a lot of like-minded friends, specifically in the areas of data analyses and GIS mapping. Many members of SEGH have their data sets and they want to know how to analyse them in a better way. SEGH has helped me greatly in establishing my own research network and indeed helped to build my own confidence in research in my area.

For early and mid- career researchers, I would like to emphasise that networking is one of the most important ways for them to build their career. When we do research, to make sure that our research contains novelty, we have to understand the current story in the literature. An easy approach to acquire the knowledge of “the current story” is to listen to presenters, as everyone tries to highlight the importance of their own work based on the current literature. Meanwhile, face-to-face discussion with colleagues is much more efficient than reading carefully-worded published papers. Therefore, it is important for early and mid- career researchers to join an internationally leading society in their own area such as SEGH and actively attend its events especially the routine conferences.

For late career scientists, it is important to keep their knowledge updated with ever-growing new knowledge. They should be open-minded with new technologies, including new analytical equipment, new methodologies and new IT skills. Staying in SEGH will ensure to keep them “young and energetic” and mostly important, alive! 

by Dr Michael Watts, SEGH webmaster

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.