SEGH Articles

The SEGH 2016 conference was a great success!!

26 January 2017
SEGH Brussels
 
110 delegates from 22 countries attended the meeting. Amongst them, 34 students actively participated, whom 5 received an EAG grant (covering the registration fee). 114 abstracts were reviewed by the scientific committee and accepted after potential corrections. The scientific programme was intense, including 59 talks and 55 posters. 
 
Four keynote speakers were invited: Prof. Reto Gieré from University of Pennsylvania (USA) , Prof. Montserrat Filella from Université de Genève (Switzerland), Prof. Elijah Petersen from NIST (USA), Prof. Vincent Balter from Ecole Normale Supérieure de Lyon (France) covering a large range of subjects like : Assessment of environmental and health impacts of airborne particulate matter;Nanoparticle reference materials; Criticity of trace elements in the current and future environments; Cancer-driven (Cu, Zn) isotopic fractionation.
A field-trip organized in the Liège's area ended the conference: the visit of the peat bogs from the Hautes-Fagnes - precious archives of the atmospheric deposits through the Holocene, was followed by the visit of the slag heaps surrounding Liège, which record a strong fingerprint of the metallurgical industries but currently develop a natural new ecosystem with specific metal-tolerant plants.
 
Three awards were distributed at the end of the event to: 
- Sebastiaan van de Velde (SEGH Best Oral)
- Alice Jarosikova (SEGH Best Poster)
- T. Gabriel Enge (Malcolm Brown Award for outstanding young scientist)
 
See the SEGH website  http://segh.net/home/ for more details and articles on the works performed by the SEGH 2016 young scientist medalists.
 
The city of Brussels was extremely welcoming with a sunny weather and the conference venue was a convivial open space where delegates have deeply appreciated to lunch, discover Belgian beers, and overall initiate lively scientific discussions. 
 
In summary, the SEGH 2016 conference in Brussels has reached its initial objectives and even exceeded them; this annual conference provided a real scientific platform of high-quality for exchanges between complementary environment and health related disciplines: geochemistry, ecotoxicology, earth sciences, medicine, epidemiology, laboratory technologies and methodologies.
 
This would not have been possible without the organisation team from ULB (Université Libre de Bruxelles) and the precious contributions from all the participants. Thank you very much to all delegates!
 
Looking forward to seeing you in China in 2017.
 
Nadine Mattielli.
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Determining soil quality in urban agricultural regions by soil enzyme-based index 2017-06-26

    Abstract

    Urban agricultural soils are highly variable, and careful selection of sensitive indicators is needed for the assessment of soil quality. This study is proposed to develop an index based on soil enzyme activities for assessing the quality of urban agricultural soils. Top soils were collected from urban agricultural areas of Korea, and soil chemical properties, texture, microbial fatty acids, and enzyme activities were determined. The soils belonged to five textural classes with the highest frequency of sandy loam. There was no clear correlation between the soil chemical properties and soil microbial properties. Principal component analysis (PCA) and factor analysis were applied to microbial groups for identification of microbial community variation in soils. Two soil groups, namely group 1 (G1) and group 2 (G2), based on microbial community abundance were examined by PCA, and those were more prominent in factor analysis. The G1 soils showed higher microbial community abundance than G2 soils. The canonical discriminant analysis was applied to the enzyme activities of sandy loam soil to develop an index, and the index validation was confirmed using the unused soils and published data. The high-quality soils in published literature assigned the high valued index. Microbial fatty acids and soil enzyme activities can be suitable indicators for soil quality evaluation of urban agricultural soils.

  • Study of the interactions of dissolved organic matter with zinc ion and the impact of competitive metal ions (Ca 2+ and Mg 2+ ) by in situ absorbance 2017-06-22

    Abstract

    The bioavailability and toxicity of zinc to aquatic life depend on dissolved organic matter (DOM), such as Suwannee River Fulvic Acid (SRFA), which plays an important role in the speciation of zinc. This study examined reactions of SRFA with zinc at different concentrations from pH 3.0 to 9.0, and competitive binding of calcium/magnesium and zinc to SRFA at pH 6.0, using in situ absorbance. Interactions of Zn2+ with SRFA chromophores were evidenced by the emergence of features in Zn-differential spectra. Among all Zn2+–SRFA systems, dominant peaks, located at 235, 275 and 385 nm, and the highest intensity at 235 nm indicated the replacement of protons by the bound Zn2+. The Zn2+ binding with SRFA could be quantified by calculating the changes of the slopes of Zn-differential log-transformed absorbance in the wavelength range of 350–400 nm (denoted as DS350–400) and by comparing the experimental data with predictions using the Non-Ideal Competitive Adsorption (NICA–Donnan) model. DS350–400 was correlated well with the bound Zn2+ concentrations predicted by NICA–Donnan model with or without Ca2+ or Mg2+. Ca2+ and Mg2+ only affect intensity of the Zn-differential and Zn-differential log-transformed absorbance, not shape. In situ absorbance can be used to gain further information about Men+–DOM interactions in the presence of various metals.

  • Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area 2017-06-16

    Abstract

    Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3–6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children’s urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s  = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62–407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111–0.542; β Q3 = 0.347, 95% CI 0.103–0.531; β Q4 = 0.314, 95% CI 0.087–0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039–0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.