SEGH Articles

The SEGH 2016 conference was a great success!!

26 January 2017
SEGH Brussels
 
110 delegates from 22 countries attended the meeting. Amongst them, 34 students actively participated, whom 5 received an EAG grant (covering the registration fee). 114 abstracts were reviewed by the scientific committee and accepted after potential corrections. The scientific programme was intense, including 59 talks and 55 posters. 
 
Four keynote speakers were invited: Prof. Reto Gieré from University of Pennsylvania (USA) , Prof. Montserrat Filella from Université de Genève (Switzerland), Prof. Elijah Petersen from NIST (USA), Prof. Vincent Balter from Ecole Normale Supérieure de Lyon (France) covering a large range of subjects like : Assessment of environmental and health impacts of airborne particulate matter;Nanoparticle reference materials; Criticity of trace elements in the current and future environments; Cancer-driven (Cu, Zn) isotopic fractionation.
A field-trip organized in the Liège's area ended the conference: the visit of the peat bogs from the Hautes-Fagnes - precious archives of the atmospheric deposits through the Holocene, was followed by the visit of the slag heaps surrounding Liège, which record a strong fingerprint of the metallurgical industries but currently develop a natural new ecosystem with specific metal-tolerant plants.
 
Three awards were distributed at the end of the event to: 
- Sebastiaan van de Velde (SEGH Best Oral)
- Alice Jarosikova (SEGH Best Poster)
- T. Gabriel Enge (Malcolm Brown Award for outstanding young scientist)
 
See the SEGH website  http://segh.net/home/ for more details and articles on the works performed by the SEGH 2016 young scientist medalists.
 
The city of Brussels was extremely welcoming with a sunny weather and the conference venue was a convivial open space where delegates have deeply appreciated to lunch, discover Belgian beers, and overall initiate lively scientific discussions. 
 
In summary, the SEGH 2016 conference in Brussels has reached its initial objectives and even exceeded them; this annual conference provided a real scientific platform of high-quality for exchanges between complementary environment and health related disciplines: geochemistry, ecotoxicology, earth sciences, medicine, epidemiology, laboratory technologies and methodologies.
 
This would not have been possible without the organisation team from ULB (Université Libre de Bruxelles) and the precious contributions from all the participants. Thank you very much to all delegates!
 
Looking forward to seeing you in China in 2017.
 
Nadine Mattielli.
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fertilizer usage and cadmium in soils, crops and food 2018-06-23

    Abstract

    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\) , \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  • Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments 2018-06-23

    Abstract

    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  • Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons 2018-06-22

    Abstract

    Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.