SEGH Articles

Urban Geochemical Mapping by the Geochemistry Expert Group of EuroGeoSurveys

25 March 2016
Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century.

Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century. Ever since the industrial revolution, with a peak after the Second World War, the urban environment has been contaminated with many toxic elements and compounds, which are being emitted by a wide variety of human activities (industry, traffic, domestic heating, coal and oil combustion, incineration, construction activities, etc.),  and often accumulate in urban soil.

Since, the 1970s a conscious attempt is being made in many countries to develop industrial estates outside the residential, commercial, and recreational parts of cities. Within the urban structure remain, however, the brownfield sites, and the enormous problem of their redevelopment in order to reduce the pressure on greenfield sites.  As many health-related problems are linked to the state of the urban environment, the European citizens want to know the geochemistry of the land their houses are built on. Moreover, it is very important that the chemical quality of soil in public places, such as schoolyards, parks, playgrounds, kindergartens, recreation areas, and workplaces is known. Estate agents need to know the quality of the land they are marketing, and insurance brokers the potential risks to their customers.

The Geochemistry Expert Group of EuroGeoSurveys realising that knowledge about soil contamination, geochemical background concentrations, and detailed spatial element distribution is becoming a key issue in urban planning initiated in 2008 an Urban Geochemistry project with the acronym URGE.  The first part was the compilation of all hitherto knowledge and its publication in a full-colour textbook “Mapping the Chemical Environment of Urban Areas” (Johnson et al., 2011):

The first part of the textbook covers more general aspects of urban chemical mapping, with an overview of current practice, and reviews of different features of the component methodologies (chemical analysis, quality control, data interpretation and presentation, risk assessment, etc.). The second part includes a number of case studies from different urban areas, principally from Europe, but with some contributions from North America, Africa and Asia.  Many of the chapters discuss the potential impact on human health and describe the multi-disciplinary effort, usually supported by legislation, required to deal with the legacy of contamination found in many urban areas.

Apart from the publication of the textbook, different urban geochemical projects were carried out in different European cities, and the results are in the process of being published in a Special Issue of the Journal of Geochemical Exploration on Urban Geochemical Mapping, thus ending the first phase of the URGE project.

One of the results of the textbook and the urban geochemical surveys that were carried out in Europe is that the comparability between investigations and results from different European cities, the European overview, is missing. Thus, a second phase of the URGE project is in the process of being initiated. The suggested project aims at advising the city administration how such studies should be carried out, and how the data are best stored, evaluated and presented.  Furthermore, a directly comparable database shall be built for a number of European reference cities (N=15-25), participating in the proposed project.  For this purpose, a detailed manual for sampling topsoil in urban areas has been written (Demetriades and Birke, 2015a):


As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (, the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (



by EurGeol Alecos Demetriades

former Director of the Division of Geochemistry and Environment,

Hellenic Institute of Geology and Mineral Exploration, Athens


Demetriades, A., Birke, M., 2015a.  Urban Topsoil Geochemical Mapping Manual (URGE II).  EuroGeoSurveys, Brussels, 52 pp.,

Demetriades, A., Birke, M., 2015b.  Urban Geochemical Mapping Manual:  Sampling, Sample preparation, Laboratory analysis, Quality control check, Statistical processing and Map plotting.  EuroGeoSurveys, Brussels, 162 pp.,

Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T. (Editors), 2011.  Mapping the chemical environment of urban areas.  Wiley-Blackwell, John Wiley & Sons Ltd., Chichester, U.K., 616 pp.,


United Nations, 2014.  World Urbanization Prospects:  The 2014 Revision, Highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division, New York, 32 pp.,

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (, the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09


    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08


    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06


    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.