SEGH Articles

Urban Geochemical Mapping by the Geochemistry Expert Group of EuroGeoSurveys

25 March 2016
Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century.

Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century. Ever since the industrial revolution, with a peak after the Second World War, the urban environment has been contaminated with many toxic elements and compounds, which are being emitted by a wide variety of human activities (industry, traffic, domestic heating, coal and oil combustion, incineration, construction activities, etc.),  and often accumulate in urban soil.

Since, the 1970s a conscious attempt is being made in many countries to develop industrial estates outside the residential, commercial, and recreational parts of cities. Within the urban structure remain, however, the brownfield sites, and the enormous problem of their redevelopment in order to reduce the pressure on greenfield sites.  As many health-related problems are linked to the state of the urban environment, the European citizens want to know the geochemistry of the land their houses are built on. Moreover, it is very important that the chemical quality of soil in public places, such as schoolyards, parks, playgrounds, kindergartens, recreation areas, and workplaces is known. Estate agents need to know the quality of the land they are marketing, and insurance brokers the potential risks to their customers.

The Geochemistry Expert Group of EuroGeoSurveys realising that knowledge about soil contamination, geochemical background concentrations, and detailed spatial element distribution is becoming a key issue in urban planning initiated in 2008 an Urban Geochemistry project with the acronym URGE.  The first part was the compilation of all hitherto knowledge and its publication in a full-colour textbook “Mapping the Chemical Environment of Urban Areas” (Johnson et al., 2011):

The first part of the textbook covers more general aspects of urban chemical mapping, with an overview of current practice, and reviews of different features of the component methodologies (chemical analysis, quality control, data interpretation and presentation, risk assessment, etc.). The second part includes a number of case studies from different urban areas, principally from Europe, but with some contributions from North America, Africa and Asia.  Many of the chapters discuss the potential impact on human health and describe the multi-disciplinary effort, usually supported by legislation, required to deal with the legacy of contamination found in many urban areas.

Apart from the publication of the textbook, different urban geochemical projects were carried out in different European cities, and the results are in the process of being published in a Special Issue of the Journal of Geochemical Exploration on Urban Geochemical Mapping, thus ending the first phase of the URGE project.

One of the results of the textbook and the urban geochemical surveys that were carried out in Europe is that the comparability between investigations and results from different European cities, the European overview, is missing. Thus, a second phase of the URGE project is in the process of being initiated. The suggested project aims at advising the city administration how such studies should be carried out, and how the data are best stored, evaluated and presented.  Furthermore, a directly comparable database shall be built for a number of European reference cities (N=15-25), participating in the proposed project.  For this purpose, a detailed manual for sampling topsoil in urban areas has been written (Demetriades and Birke, 2015a):

 

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (http://www.sub-urban.eu/), the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (http://sub-urban.squarespace.com/new-index-1/#geotechnical-modelling-hazards-wg-25):

 

 

by EurGeol Alecos Demetriades

former Director of the Division of Geochemistry and Environment,

Hellenic Institute of Geology and Mineral Exploration, Athens


References

Demetriades, A., Birke, M., 2015a.  Urban Topsoil Geochemical Mapping Manual (URGE II).  EuroGeoSurveys, Brussels, 52 pp., http://www.eurogeosurveys.org/wp-content/uploads/2015/06/EGS_Urban_Topsoil_Geochemical_Mapping_Manual_URGE_II_HR_version.pdf.

Demetriades, A., Birke, M., 2015b.  Urban Geochemical Mapping Manual:  Sampling, Sample preparation, Laboratory analysis, Quality control check, Statistical processing and Map plotting.  EuroGeoSurveys, Brussels, 162 pp., http://www.eurogeosurveys.org/wp-content/uploads/2015/10/Urban_Geochemical_Mapping_Manual.pdf.

Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T. (Editors), 2011.  Mapping the chemical environment of urban areas.  Wiley-Blackwell, John Wiley & Sons Ltd., Chichester, U.K., 616 pp., http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470747242.html.

 

United Nations, 2014.  World Urbanization Prospects:  The 2014 Revision, Highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division, New York, 32 pp., http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (http://www.sub-urban.eu/), the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (http://sub-urban.squarespace.com/new-index-1/#geotechnical-modelling-hazards-wg-25):

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fertilizer usage and cadmium in soils, crops and food 2018-06-23

    Abstract

    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\) , \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  • Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments 2018-06-23

    Abstract

    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  • Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons 2018-06-22

    Abstract

    Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.