SEGH Articles

Urban Geochemical Mapping by the Geochemistry Expert Group of EuroGeoSurveys

25 March 2016
Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century.

Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century. Ever since the industrial revolution, with a peak after the Second World War, the urban environment has been contaminated with many toxic elements and compounds, which are being emitted by a wide variety of human activities (industry, traffic, domestic heating, coal and oil combustion, incineration, construction activities, etc.),  and often accumulate in urban soil.

Since, the 1970s a conscious attempt is being made in many countries to develop industrial estates outside the residential, commercial, and recreational parts of cities. Within the urban structure remain, however, the brownfield sites, and the enormous problem of their redevelopment in order to reduce the pressure on greenfield sites.  As many health-related problems are linked to the state of the urban environment, the European citizens want to know the geochemistry of the land their houses are built on. Moreover, it is very important that the chemical quality of soil in public places, such as schoolyards, parks, playgrounds, kindergartens, recreation areas, and workplaces is known. Estate agents need to know the quality of the land they are marketing, and insurance brokers the potential risks to their customers.

The Geochemistry Expert Group of EuroGeoSurveys realising that knowledge about soil contamination, geochemical background concentrations, and detailed spatial element distribution is becoming a key issue in urban planning initiated in 2008 an Urban Geochemistry project with the acronym URGE.  The first part was the compilation of all hitherto knowledge and its publication in a full-colour textbook “Mapping the Chemical Environment of Urban Areas” (Johnson et al., 2011):

The first part of the textbook covers more general aspects of urban chemical mapping, with an overview of current practice, and reviews of different features of the component methodologies (chemical analysis, quality control, data interpretation and presentation, risk assessment, etc.). The second part includes a number of case studies from different urban areas, principally from Europe, but with some contributions from North America, Africa and Asia.  Many of the chapters discuss the potential impact on human health and describe the multi-disciplinary effort, usually supported by legislation, required to deal with the legacy of contamination found in many urban areas.

Apart from the publication of the textbook, different urban geochemical projects were carried out in different European cities, and the results are in the process of being published in a Special Issue of the Journal of Geochemical Exploration on Urban Geochemical Mapping, thus ending the first phase of the URGE project.

One of the results of the textbook and the urban geochemical surveys that were carried out in Europe is that the comparability between investigations and results from different European cities, the European overview, is missing. Thus, a second phase of the URGE project is in the process of being initiated. The suggested project aims at advising the city administration how such studies should be carried out, and how the data are best stored, evaluated and presented.  Furthermore, a directly comparable database shall be built for a number of European reference cities (N=15-25), participating in the proposed project.  For this purpose, a detailed manual for sampling topsoil in urban areas has been written (Demetriades and Birke, 2015a):


As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (, the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (



by EurGeol Alecos Demetriades

former Director of the Division of Geochemistry and Environment,

Hellenic Institute of Geology and Mineral Exploration, Athens


Demetriades, A., Birke, M., 2015a.  Urban Topsoil Geochemical Mapping Manual (URGE II).  EuroGeoSurveys, Brussels, 52 pp.,

Demetriades, A., Birke, M., 2015b.  Urban Geochemical Mapping Manual:  Sampling, Sample preparation, Laboratory analysis, Quality control check, Statistical processing and Map plotting.  EuroGeoSurveys, Brussels, 162 pp.,

Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T. (Editors), 2011.  Mapping the chemical environment of urban areas.  Wiley-Blackwell, John Wiley & Sons Ltd., Chichester, U.K., 616 pp.,

United Nations, 2014.  World Urbanization Prospects:  The 2014 Revision, Highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division, New York, 32 pp.,


As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (, the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis 2019-12-10


    This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM–EDX. The high level and significant variation of PM10 (162.2 µg m−3) and PM2.5 (83.9 µg m−3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.

  • Integration of remote sensing data and in situ measurements to monitor the water quality of the Ismailia Canal, Nile Delta, Egypt 2019-12-10


    The Ismailia Canal is one of the most important tributaries of the River Nile in Egypt. It is threatened by extinction from several sources of pollution, in addition to the intersection and nearness of the canal path with the Bilbayes drain and the effluent from the two largest conventional wastewater treatment plants in Greater Cairo. In this study, the integration of remote sensing and geospatial information system techniques is carried out to enhance the contribution of satellite data in water quality management in the Ismailia Canal. A Landsat-8 operational land imager image dated 2018 was used to detect the land use and land cover changes in the area of study, in addition to retrieving various spectral band ratios. Statistical correlations were applied among the extracted band ratios and the measured in situ water quality parameters. The most appropriate spectral band ratios were extracted from the NIR band (near infrared/blue), which showed a significant correlation with eight water quality metrics (CO3, BOD5, COD, TSS, TDS, Cl, NH4, and fecal coliform bacteria). A linear regression model was then established to predict information about these important water quality parameters along Ismailia Canal. The developed models, using linear regression equations for this study, give a set of powerful decision support frameworks with statistical tools to provide comprehensive, integrated views of surface water quality information under similar circumstances.

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01


    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.