SEGH Articles

Urban Geochemical Mapping by the Geochemistry Expert Group of EuroGeoSurveys

25 March 2016
Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century.

Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century. Ever since the industrial revolution, with a peak after the Second World War, the urban environment has been contaminated with many toxic elements and compounds, which are being emitted by a wide variety of human activities (industry, traffic, domestic heating, coal and oil combustion, incineration, construction activities, etc.),  and often accumulate in urban soil.

Since, the 1970s a conscious attempt is being made in many countries to develop industrial estates outside the residential, commercial, and recreational parts of cities. Within the urban structure remain, however, the brownfield sites, and the enormous problem of their redevelopment in order to reduce the pressure on greenfield sites.  As many health-related problems are linked to the state of the urban environment, the European citizens want to know the geochemistry of the land their houses are built on. Moreover, it is very important that the chemical quality of soil in public places, such as schoolyards, parks, playgrounds, kindergartens, recreation areas, and workplaces is known. Estate agents need to know the quality of the land they are marketing, and insurance brokers the potential risks to their customers.

The Geochemistry Expert Group of EuroGeoSurveys realising that knowledge about soil contamination, geochemical background concentrations, and detailed spatial element distribution is becoming a key issue in urban planning initiated in 2008 an Urban Geochemistry project with the acronym URGE.  The first part was the compilation of all hitherto knowledge and its publication in a full-colour textbook “Mapping the Chemical Environment of Urban Areas” (Johnson et al., 2011):

The first part of the textbook covers more general aspects of urban chemical mapping, with an overview of current practice, and reviews of different features of the component methodologies (chemical analysis, quality control, data interpretation and presentation, risk assessment, etc.). The second part includes a number of case studies from different urban areas, principally from Europe, but with some contributions from North America, Africa and Asia.  Many of the chapters discuss the potential impact on human health and describe the multi-disciplinary effort, usually supported by legislation, required to deal with the legacy of contamination found in many urban areas.

Apart from the publication of the textbook, different urban geochemical projects were carried out in different European cities, and the results are in the process of being published in a Special Issue of the Journal of Geochemical Exploration on Urban Geochemical Mapping, thus ending the first phase of the URGE project.

One of the results of the textbook and the urban geochemical surveys that were carried out in Europe is that the comparability between investigations and results from different European cities, the European overview, is missing. Thus, a second phase of the URGE project is in the process of being initiated. The suggested project aims at advising the city administration how such studies should be carried out, and how the data are best stored, evaluated and presented.  Furthermore, a directly comparable database shall be built for a number of European reference cities (N=15-25), participating in the proposed project.  For this purpose, a detailed manual for sampling topsoil in urban areas has been written (Demetriades and Birke, 2015a):

 

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (http://www.sub-urban.eu/), the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (http://sub-urban.squarespace.com/new-index-1/#geotechnical-modelling-hazards-wg-25):

 

 

by EurGeol Alecos Demetriades

former Director of the Division of Geochemistry and Environment,

Hellenic Institute of Geology and Mineral Exploration, Athens


References

Demetriades, A., Birke, M., 2015a.  Urban Topsoil Geochemical Mapping Manual (URGE II).  EuroGeoSurveys, Brussels, 52 pp., http://www.eurogeosurveys.org/wp-content/uploads/2015/06/EGS_Urban_Topsoil_Geochemical_Mapping_Manual_URGE_II_HR_version.pdf.

Demetriades, A., Birke, M., 2015b.  Urban Geochemical Mapping Manual:  Sampling, Sample preparation, Laboratory analysis, Quality control check, Statistical processing and Map plotting.  EuroGeoSurveys, Brussels, 162 pp., http://www.eurogeosurveys.org/wp-content/uploads/2015/10/Urban_Geochemical_Mapping_Manual.pdf.

Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T. (Editors), 2011.  Mapping the chemical environment of urban areas.  Wiley-Blackwell, John Wiley & Sons Ltd., Chichester, U.K., 616 pp., http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470747242.html.

 

United Nations, 2014.  World Urbanization Prospects:  The 2014 Revision, Highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division, New York, 32 pp., http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (http://www.sub-urban.eu/), the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (http://sub-urban.squarespace.com/new-index-1/#geotechnical-modelling-hazards-wg-25):

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.