SEGH Articles

Urban Geochemical Mapping by the Geochemistry Expert Group of EuroGeoSurveys

25 March 2016
Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century.

Given the fact that by 2050 more than 80% of the European population will be living in cities (United Nations, 2014), the quality of the urban environment is becoming an important issue in the 21st century. Ever since the industrial revolution, with a peak after the Second World War, the urban environment has been contaminated with many toxic elements and compounds, which are being emitted by a wide variety of human activities (industry, traffic, domestic heating, coal and oil combustion, incineration, construction activities, etc.),  and often accumulate in urban soil.

Since, the 1970s a conscious attempt is being made in many countries to develop industrial estates outside the residential, commercial, and recreational parts of cities. Within the urban structure remain, however, the brownfield sites, and the enormous problem of their redevelopment in order to reduce the pressure on greenfield sites.  As many health-related problems are linked to the state of the urban environment, the European citizens want to know the geochemistry of the land their houses are built on. Moreover, it is very important that the chemical quality of soil in public places, such as schoolyards, parks, playgrounds, kindergartens, recreation areas, and workplaces is known. Estate agents need to know the quality of the land they are marketing, and insurance brokers the potential risks to their customers.

The Geochemistry Expert Group of EuroGeoSurveys realising that knowledge about soil contamination, geochemical background concentrations, and detailed spatial element distribution is becoming a key issue in urban planning initiated in 2008 an Urban Geochemistry project with the acronym URGE.  The first part was the compilation of all hitherto knowledge and its publication in a full-colour textbook “Mapping the Chemical Environment of Urban Areas” (Johnson et al., 2011):

The first part of the textbook covers more general aspects of urban chemical mapping, with an overview of current practice, and reviews of different features of the component methodologies (chemical analysis, quality control, data interpretation and presentation, risk assessment, etc.). The second part includes a number of case studies from different urban areas, principally from Europe, but with some contributions from North America, Africa and Asia.  Many of the chapters discuss the potential impact on human health and describe the multi-disciplinary effort, usually supported by legislation, required to deal with the legacy of contamination found in many urban areas.

Apart from the publication of the textbook, different urban geochemical projects were carried out in different European cities, and the results are in the process of being published in a Special Issue of the Journal of Geochemical Exploration on Urban Geochemical Mapping, thus ending the first phase of the URGE project.

One of the results of the textbook and the urban geochemical surveys that were carried out in Europe is that the comparability between investigations and results from different European cities, the European overview, is missing. Thus, a second phase of the URGE project is in the process of being initiated. The suggested project aims at advising the city administration how such studies should be carried out, and how the data are best stored, evaluated and presented.  Furthermore, a directly comparable database shall be built for a number of European reference cities (N=15-25), participating in the proposed project.  For this purpose, a detailed manual for sampling topsoil in urban areas has been written (Demetriades and Birke, 2015a):

 

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (http://www.sub-urban.eu/), the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (http://sub-urban.squarespace.com/new-index-1/#geotechnical-modelling-hazards-wg-25):

 

 

by EurGeol Alecos Demetriades

former Director of the Division of Geochemistry and Environment,

Hellenic Institute of Geology and Mineral Exploration, Athens


References

Demetriades, A., Birke, M., 2015a.  Urban Topsoil Geochemical Mapping Manual (URGE II).  EuroGeoSurveys, Brussels, 52 pp., http://www.eurogeosurveys.org/wp-content/uploads/2015/06/EGS_Urban_Topsoil_Geochemical_Mapping_Manual_URGE_II_HR_version.pdf.

Demetriades, A., Birke, M., 2015b.  Urban Geochemical Mapping Manual:  Sampling, Sample preparation, Laboratory analysis, Quality control check, Statistical processing and Map plotting.  EuroGeoSurveys, Brussels, 162 pp., http://www.eurogeosurveys.org/wp-content/uploads/2015/10/Urban_Geochemical_Mapping_Manual.pdf.

Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T. (Editors), 2011.  Mapping the chemical environment of urban areas.  Wiley-Blackwell, John Wiley & Sons Ltd., Chichester, U.K., 616 pp., http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470747242.html.

United Nations, 2014.  World Urbanization Prospects:  The 2014 Revision, Highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division, New York, 32 pp., https://selectra.co.uk/sites/selectra.co.uk/files/pdf/WUP2014-Highlights.pdf

 

As there was a demand for a comprehensive Urban Geochemical Mapping Manual by the EU COST  Sub-Urban project (http://www.sub-urban.eu/), the EuroGeoSurveys’ Geochemistry Expert Group was commissioned to write it (Demetriades and Birke, 2015b) as part of WG 2.6 “Geochemistry” (http://sub-urban.squarespace.com/new-index-1/#geotechnical-modelling-hazards-wg-25):

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.