SEGH Articles

A human health risk assessment framework to improve the management of potentially toxic elements in informally recycled waste electronic and electrical equipment (WEEE)

04 February 2019
Dr Alessandra Cesaro, University of Salerno and Professor Andrew Hursthouse, University of the West of Scotland assess the human health risk of potentially toxic elements in informally recycled waste electronic and electrical equipment (WEEE)

Members of the EU COST Action ES140 ReCreew (http://www.recreew.eu/) have recently completed review studies which provide an assessment of the potential hazard from the informal recycling of WEEE. These activities include manual handling, sorting, component removal, crushing and grinding as well as burning and acid leaching, generate situations around the world where both operators and the wider community are exposed to emissions and residues from these activities. Substances released include a wider range of metallic elements and organic compounds form the component plastics and as a result of heating (burning or melting). Much of the WEEE collected in Europe is destined for third countries and these markets show quite dynamic changes, particularly with recent restrictions on waste import to China. 

The variability of physical and compositional characteristics and rapid growth in WEEE production creates an enormous challenge to establish appropriate methods of handling materials – particularly in the informal sector. ReCreew was concerned that the diverse methods of handling were difficult to assess systematically from a human health risk. Consequently, they embarked on a systematic study of the compositional variation and model processes to see whether there was an opportunity to provide some basis for assessment.

By using knowledge of the compositional features of individual printed circuit boards in WEEE components, an assessment based on theoretical inhalation route, ranked components on their basis of potential harm form a substance weighted perspective. This identified individual groups of components – with the top PCB (printer) nearly 4 times more hazardous than the second place (mobile phone) (Cesaro et al, 2018). Establishing the basis for prioritisation in health protection. Subsequently, a “Shrinking-Core” combustion model was used to look at emissions of metals and organic compounds (dioxins/furans) during open burning practice.  Based on mass weighted toxicity assessment, this clearly identified open burning of cables above computer and mobile phone PCBs (Cesaro et al, 2019).

These early assessments direct research to further develop realistic datasets for compositional variation of WEEE and in producing pragmatic guidance to engage with informal recycling communities and we hope to open the wider debate on resource recovery in the informal sector.


 

Cesaro, A, Belgiorno, V, Vaccari, M, Jandric, A, Chung, TD, Dias, MI, Hursthouse, A & Salhofer, S 2018, 'A device-specific prioritization strategy based on the potential for harm to human health in informal WEEE recycling' Environmental Science and Pollution Research, vol 25, no. 1, pp. 683–692. DOI: 10.1007/s11356-017-0390-7

Cesaro, A, Belgiorno, V, Gorrasi, G, Viscusi, G, Vaccari, M, Vinti, G, Jandric, A, Dias, MI, Hursthouse, A & Salhofer, S 2019, 'A relative risk assessment of the open burning of WEEE' Environmental Science and Pollution Research (accepted, in press).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Soil contamination and human health: Part 1—preface 2020-01-27
  • The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley 2020-01-27

    Abstract

    The paper presents the results of the model experiment on spring barley (Hordeum vulgare L.) grown in polluted soil. The influence of separate and combined application of wood biochar and heavy metal-tolerant bacteria on morpho-physiological, anatomical and ultrastructural parameters of H. vulgare L. has been studied. The joint application of biochar and bacteria increased the shoot length by 2.1-fold, root length by 1.7-fold, leaf length by 2.3-fold and dry weight by threefold compared to polluted variant, bringing the plant parameters to the control level. The maximal quantum yield of photosystem II decreased by 8.3% in H. vulgare L. grown in contaminated soil, whereas this decrease was less in biochar (7%), bacteria (6%) and in combined application of bacteria and biochar (5%). As for the transpiration rate, the H. vulgare L. grown in polluted soil has shown a decrease in transpiration rate by 26%. At the same time, the simultaneous application of biochar and bacteria has led to a significant improvement in the transpiration rate (14%). The H. vulgare L. also showed anatomical (integrity of epidermal, vascular bundles, parenchymal and chlorenchymal cells) and ultrastructural (chloroplasts, thylakoid system, plastoglobules, starch grains, mitochondria, peroxisomes, ribosomes, endoplasmic reticulum, vacuoles) changes, revealed by light-optical and transmission electron microscopy of leaf sections. The effects were most prominent in H. vulgare L., grown in polluted soil but gradually improved with application of biochar, bacteria and their combination. The use of biochar in combination with metal-tolerant bacteria is an efficient tool for remediation of soils, contaminated with heavy metals. The positive changes caused by the treatment can be consistently traced at all levels of plant organization.

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract