SEGH Articles

Winner of the Malcolm Brown Outstanding Young Scientist Award

12 August 2016
Gabriel Enge won the Malcolm Brown outstanding young scientist award at the 32nd SEGH International conference in Brussels. He describes his research leading to this award.

I am a research scientist, working on the application of medical isotope metallomics to neurodegenerative diseases. Neurodegenerative diseases are characterized by a progressive loss of neuron function. Illnesses, such as Parkinson’s, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) are located within the family of neurodegenerative diseases.

Amyotrophic lateral sclerosis was first described in 1869 (Charcot & Joffroy 1869) and is a fatal, predominantly adult-onset neurodegenerative disease that leads to the selective death of motor neurons (Redler & Dokholyan 2012; Rowland & Shneider 2001). This selective death causes progressive muscle paralysis and spasticity, affecting mobility, speech and respiration (Hardiman et al. 2011). Most patients are fully aware of the disease progression, with about half of all affected individuals passing away within 3-5 years of diagnosis, while less than 20% survive more than 5 years (Robberecht & Philips 2013). Approximately 90% of ALS cases are sporadic, and the remaining, familial (Robberecht & Philips 2013). The neuropathology of ALS is staggeringly complex on a subcellular level and includes abnormalities in almost every cellular compartment. It was additionally observed that concentrations of several elements were elevated in the cerebro spinal fluid of ALS patients (Roos et al. 2013), and that mouse models demonstrated specific accumulations of metals (Cu, Zn) in key tissues, such as brain and spinal cord (Li et al. 2006; Tokuda et al. 2007; Tokuda et al. 2013). In spite of our tremendous advances into understanding the disease and its progression in the past 150 years, no diagnostic tools or cures are currently available.

Here at the University of Wollongong, in the Wollongong Isotope Geochronology Laboratory, I have established with my PhD project a new way of looking at the disease. By taking a mouse model of the disease, and applying geochemical analytical techniques of measuring metal concentrations and Cu isotope ratios in tissues, I attempt to gain a more profound understanding of metabolic perturbations that involve metals, in particular Cu. One of the novelty factors of the research includes a time and disease development dependent resolution of changes in metal concentrations and Cu isotope ratios. Future work includes a spatial resolution component using laser ablation methods.

Besides my interest in neurodegenerative diseases, I am also very interested in using metallomics and isotope methods to trace ageing processes in humans, and explore different metabolic ageing processes. Another interest is the continued automation of manual ion-exchange chromatography procedures in order to be able to establish them as part of clinically-diagnostic routines.



Heading: Fun at work with the Neptune Plus MC-ICP-MS



"Let's keep looking in spite of everything. Let us keep searching. It is indeed the best method of finding, and perhaps thanks to our efforts, the verdict we will give such a patient tomorrow will not be the same we must give this man today" - Jean-Martin Charcot (1889).

Charcot's words have been my inspiration since the start of my candidacy and I want to express my deep gratitude for receiving the Malcolm Brown Outstanding Young Scientist Award. I realise that I am not at a stage of my career where I have much to show yet, and therefore I am especially thankful for this indication of support from the community. 



By T. Gabriel Enge, PhD Candidate, School of Earth and Environmental Sciences, University of Wollongong, Australia


J. Charcot and A. Joffrey, Arch. Physiol. Norm. Pathol., 1869, 2, 354-744.

R.L. Redler and N.V. Dokholyan, Prog. Mol. Biol. Trans. Sci., 2012, 107, 215-262

L.P. Rowland and N.A. Schneider, N. Engl. J. Med., 2001, 344, 1688-1700.

O. Hardiman et al., Nat. Rev. Neurol., 2011, 7, 639-649.

W. Robberecht and T. Philips, Nat. Rev. Neurosci., 2013, 14, 248-264.

P.M. Roos et al. Biol. Trace Elem. Res., 2013, 151, 159-170.

Q-X Li et al. Aging Cell, 2006, 5, 153-165.

E. Tokuda et al. Toxicology, 2007, 229, 33-41.

E. Tokuda et al., Neurobiol. Dis., 2013, 54, 308-319.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18


    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16


    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14


    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.