SEGH Articles

Winner of the Malcolm Brown Outstanding Young Scientist Award

12 August 2016
Gabriel Enge won the Malcolm Brown outstanding young scientist award at the 32nd SEGH International conference in Brussels. He describes his research leading to this award.

I am a research scientist, working on the application of medical isotope metallomics to neurodegenerative diseases. Neurodegenerative diseases are characterized by a progressive loss of neuron function. Illnesses, such as Parkinson’s, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) are located within the family of neurodegenerative diseases.

Amyotrophic lateral sclerosis was first described in 1869 (Charcot & Joffroy 1869) and is a fatal, predominantly adult-onset neurodegenerative disease that leads to the selective death of motor neurons (Redler & Dokholyan 2012; Rowland & Shneider 2001). This selective death causes progressive muscle paralysis and spasticity, affecting mobility, speech and respiration (Hardiman et al. 2011). Most patients are fully aware of the disease progression, with about half of all affected individuals passing away within 3-5 years of diagnosis, while less than 20% survive more than 5 years (Robberecht & Philips 2013). Approximately 90% of ALS cases are sporadic, and the remaining, familial (Robberecht & Philips 2013). The neuropathology of ALS is staggeringly complex on a subcellular level and includes abnormalities in almost every cellular compartment. It was additionally observed that concentrations of several elements were elevated in the cerebro spinal fluid of ALS patients (Roos et al. 2013), and that mouse models demonstrated specific accumulations of metals (Cu, Zn) in key tissues, such as brain and spinal cord (Li et al. 2006; Tokuda et al. 2007; Tokuda et al. 2013). In spite of our tremendous advances into understanding the disease and its progression in the past 150 years, no diagnostic tools or cures are currently available.

Here at the University of Wollongong, in the Wollongong Isotope Geochronology Laboratory, I have established with my PhD project a new way of looking at the disease. By taking a mouse model of the disease, and applying geochemical analytical techniques of measuring metal concentrations and Cu isotope ratios in tissues, I attempt to gain a more profound understanding of metabolic perturbations that involve metals, in particular Cu. One of the novelty factors of the research includes a time and disease development dependent resolution of changes in metal concentrations and Cu isotope ratios. Future work includes a spatial resolution component using laser ablation methods.

Besides my interest in neurodegenerative diseases, I am also very interested in using metallomics and isotope methods to trace ageing processes in humans, and explore different metabolic ageing processes. Another interest is the continued automation of manual ion-exchange chromatography procedures in order to be able to establish them as part of clinically-diagnostic routines.



Heading: Fun at work with the Neptune Plus MC-ICP-MS



"Let's keep looking in spite of everything. Let us keep searching. It is indeed the best method of finding, and perhaps thanks to our efforts, the verdict we will give such a patient tomorrow will not be the same we must give this man today" - Jean-Martin Charcot (1889).

Charcot's words have been my inspiration since the start of my candidacy and I want to express my deep gratitude for receiving the Malcolm Brown Outstanding Young Scientist Award. I realise that I am not at a stage of my career where I have much to show yet, and therefore I am especially thankful for this indication of support from the community. 



By T. Gabriel Enge, PhD Candidate, School of Earth and Environmental Sciences, University of Wollongong, Australia


J. Charcot and A. Joffrey, Arch. Physiol. Norm. Pathol., 1869, 2, 354-744.

R.L. Redler and N.V. Dokholyan, Prog. Mol. Biol. Trans. Sci., 2012, 107, 215-262

L.P. Rowland and N.A. Schneider, N. Engl. J. Med., 2001, 344, 1688-1700.

O. Hardiman et al., Nat. Rev. Neurol., 2011, 7, 639-649.

W. Robberecht and T. Philips, Nat. Rev. Neurosci., 2013, 14, 248-264.

P.M. Roos et al. Biol. Trace Elem. Res., 2013, 151, 159-170.

Q-X Li et al. Aging Cell, 2006, 5, 153-165.

E. Tokuda et al. Toxicology, 2007, 229, 33-41.

E. Tokuda et al., Neurobiol. Dis., 2013, 54, 308-319.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16


    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13


    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11


    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.