SEGH Articles

Winner of the Malcolm Brown Outstanding Young Scientist Award

12 August 2016
Gabriel Enge won the Malcolm Brown outstanding young scientist award at the 32nd SEGH International conference in Brussels. He describes his research leading to this award.


I am a research scientist, working on the application of medical isotope metallomics to neurodegenerative diseases. Neurodegenerative diseases are characterized by a progressive loss of neuron function. Illnesses, such as Parkinson’s, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) are located within the family of neurodegenerative diseases.

Amyotrophic lateral sclerosis was first described in 1869 (Charcot & Joffroy 1869) and is a fatal, predominantly adult-onset neurodegenerative disease that leads to the selective death of motor neurons (Redler & Dokholyan 2012; Rowland & Shneider 2001). This selective death causes progressive muscle paralysis and spasticity, affecting mobility, speech and respiration (Hardiman et al. 2011). Most patients are fully aware of the disease progression, with about half of all affected individuals passing away within 3-5 years of diagnosis, while less than 20% survive more than 5 years (Robberecht & Philips 2013). Approximately 90% of ALS cases are sporadic, and the remaining, familial (Robberecht & Philips 2013). The neuropathology of ALS is staggeringly complex on a subcellular level and includes abnormalities in almost every cellular compartment. It was additionally observed that concentrations of several elements were elevated in the cerebro spinal fluid of ALS patients (Roos et al. 2013), and that mouse models demonstrated specific accumulations of metals (Cu, Zn) in key tissues, such as brain and spinal cord (Li et al. 2006; Tokuda et al. 2007; Tokuda et al. 2013). In spite of our tremendous advances into understanding the disease and its progression in the past 150 years, no diagnostic tools or cures are currently available.


Here at the University of Wollongong, in the Wollongong Isotope Geochronology Laboratory, I have established with my PhD project a new way of looking at the disease. By taking a mouse model of the disease, and applying geochemical analytical techniques of measuring metal concentrations and Cu isotope ratios in tissues, I attempt to gain a more profound understanding of metabolic perturbations that involve metals, in particular Cu. One of the novelty factors of the research includes a time and disease development dependent resolution of changes in metal concentrations and Cu isotope ratios. Future work includes a spatial resolution component using laser ablation methods.

Besides my interest in neurodegenerative diseases, I am also very interested in using metallomics and isotope methods to trace ageing processes in humans, and explore different metabolic ageing processes. Another interest is the continued automation of manual ion-exchange chromatography procedures in order to be able to establish them as part of clinically-diagnostic routines.

 

 

Heading: Fun at work with the Neptune Plus MC-ICP-MS

 

 

"Let's keep looking in spite of everything. Let us keep searching. It is indeed the best method of finding, and perhaps thanks to our efforts, the verdict we will give such a patient tomorrow will not be the same we must give this man today" - Jean-Martin Charcot (1889).

Charcot's words have been my inspiration since the start of my candidacy and I want to express my deep gratitude for receiving the Malcolm Brown Outstanding Young Scientist Award. I realise that I am not at a stage of my career where I have much to show yet, and therefore I am especially thankful for this indication of support from the community. 

  

 

By T. Gabriel Enge, PhD Candidate, School of Earth and Environmental Sciences, University of Wollongong, Australia


References

J. Charcot and A. Joffrey, Arch. Physiol. Norm. Pathol., 1869, 2, 354-744.

R.L. Redler and N.V. Dokholyan, Prog. Mol. Biol. Trans. Sci., 2012, 107, 215-262

L.P. Rowland and N.A. Schneider, N. Engl. J. Med., 2001, 344, 1688-1700.

O. Hardiman et al., Nat. Rev. Neurol., 2011, 7, 639-649.

W. Robberecht and T. Philips, Nat. Rev. Neurosci., 2013, 14, 248-264.

P.M. Roos et al. Biol. Trace Elem. Res., 2013, 151, 159-170.

Q-X Li et al. Aging Cell, 2006, 5, 153-165.

E. Tokuda et al. Toxicology, 2007, 229, 33-41.

E. Tokuda et al., Neurobiol. Dis., 2013, 54, 308-319.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19

    Abstract

    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17

    Abstract

    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12

    Abstract

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.