SEGH Articles

Winner of the Malcolm Brown Outstanding Young Scientist Award

12 August 2016
Gabriel Enge won the Malcolm Brown outstanding young scientist award at the 32nd SEGH International conference in Brussels. He describes his research leading to this award.


I am a research scientist, working on the application of medical isotope metallomics to neurodegenerative diseases. Neurodegenerative diseases are characterized by a progressive loss of neuron function. Illnesses, such as Parkinson’s, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) are located within the family of neurodegenerative diseases.

Amyotrophic lateral sclerosis was first described in 1869 (Charcot & Joffroy 1869) and is a fatal, predominantly adult-onset neurodegenerative disease that leads to the selective death of motor neurons (Redler & Dokholyan 2012; Rowland & Shneider 2001). This selective death causes progressive muscle paralysis and spasticity, affecting mobility, speech and respiration (Hardiman et al. 2011). Most patients are fully aware of the disease progression, with about half of all affected individuals passing away within 3-5 years of diagnosis, while less than 20% survive more than 5 years (Robberecht & Philips 2013). Approximately 90% of ALS cases are sporadic, and the remaining, familial (Robberecht & Philips 2013). The neuropathology of ALS is staggeringly complex on a subcellular level and includes abnormalities in almost every cellular compartment. It was additionally observed that concentrations of several elements were elevated in the cerebro spinal fluid of ALS patients (Roos et al. 2013), and that mouse models demonstrated specific accumulations of metals (Cu, Zn) in key tissues, such as brain and spinal cord (Li et al. 2006; Tokuda et al. 2007; Tokuda et al. 2013). In spite of our tremendous advances into understanding the disease and its progression in the past 150 years, no diagnostic tools or cures are currently available.


Here at the University of Wollongong, in the Wollongong Isotope Geochronology Laboratory, I have established with my PhD project a new way of looking at the disease. By taking a mouse model of the disease, and applying geochemical analytical techniques of measuring metal concentrations and Cu isotope ratios in tissues, I attempt to gain a more profound understanding of metabolic perturbations that involve metals, in particular Cu. One of the novelty factors of the research includes a time and disease development dependent resolution of changes in metal concentrations and Cu isotope ratios. Future work includes a spatial resolution component using laser ablation methods.

Besides my interest in neurodegenerative diseases, I am also very interested in using metallomics and isotope methods to trace ageing processes in humans, and explore different metabolic ageing processes. Another interest is the continued automation of manual ion-exchange chromatography procedures in order to be able to establish them as part of clinically-diagnostic routines.

 

 

Heading: Fun at work with the Neptune Plus MC-ICP-MS

 

 

"Let's keep looking in spite of everything. Let us keep searching. It is indeed the best method of finding, and perhaps thanks to our efforts, the verdict we will give such a patient tomorrow will not be the same we must give this man today" - Jean-Martin Charcot (1889).

Charcot's words have been my inspiration since the start of my candidacy and I want to express my deep gratitude for receiving the Malcolm Brown Outstanding Young Scientist Award. I realise that I am not at a stage of my career where I have much to show yet, and therefore I am especially thankful for this indication of support from the community. 

  

 

By T. Gabriel Enge, PhD Candidate, School of Earth and Environmental Sciences, University of Wollongong, Australia


References

J. Charcot and A. Joffrey, Arch. Physiol. Norm. Pathol., 1869, 2, 354-744.

R.L. Redler and N.V. Dokholyan, Prog. Mol. Biol. Trans. Sci., 2012, 107, 215-262

L.P. Rowland and N.A. Schneider, N. Engl. J. Med., 2001, 344, 1688-1700.

O. Hardiman et al., Nat. Rev. Neurol., 2011, 7, 639-649.

W. Robberecht and T. Philips, Nat. Rev. Neurosci., 2013, 14, 248-264.

P.M. Roos et al. Biol. Trace Elem. Res., 2013, 151, 159-170.

Q-X Li et al. Aging Cell, 2006, 5, 153-165.

E. Tokuda et al. Toxicology, 2007, 229, 33-41.

E. Tokuda et al., Neurobiol. Dis., 2013, 54, 308-319.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.