SEGH Articles

Working together to combat environmental pollution and inform agricultural strategies

10 July 2015
Environmental scientists give an account of their experience from a Commonwealth Professional Fellowship in the UK.

My team at the British Geological Survey has hosted four Commonwealth Professional Fellowships from Pakistan, India, Malawi and Zimbabwe since 2012.  The scheme funded by the Commonwealth Scholarship Council UK (CSCUK) provides support for professionals in the Commonwealth to undertake training at a host institute in the UK.  Here a few of the Fellows give an account of their experience and opportunities arising from such a Fellowship in the UK.

Dr Mousumi Chatterjee – University of Calcutta / University of Reading

‘It was like my dream came true,” says Dr Mousumi Chatterjee, ‘when I opened the email informing of my success in attaining a Commonwealth Professional Fellowship. I was happy as I was going to experience everything that I had wanted to learn for the previous three years of postgraduate and post-doctorate training at the University of Calcutta.’  Mousumi, a biogeochemist working on mercury pollution in the Indian Sundarban wetland ecosystem, wanted to highlight the mercury exposure of different fish within an estuarine food chain, in order to measure direct human exposure levels. ‘My desire was fulfilled when I started my Professional Fellowship with BGS. Not only is the BGS well equipped with sophisticated analytical facilities, but the organisation also provided me with expert guidance and a friendly environment, and encouraged me in the new practical implementation of scientific ideas.’

During her Professional Fellowship in 2013, Mousumi used the BGS Inorganic Geochemistry laboratories to determine mercury contamination in a variety of edible fish, polychaete worms and bivalve molluscs.  ‘The results were fascinating, as the level of mercury contamination signified the feeding habits of different species of fish.’

Mousumi benefited from several scientific exchanges during her stay. ‘I visited the Marine Sciences Department at the University of Bangor, where I learnt how to extract the otolith (a small fish ear bone), which acts as a recorder of environmental chemistry, from hilsha fish. This resulted in a research collaboration with the Indian Institute of Science, Bangalore after my return to India. I also had the opportunity to attend and present my research findings at the International Conference of Mercury as a Global Pollutant 2013, held in Edinburgh, which brought together the world’s leading experts on mercury contamination of the environment.’

‘My Professional Fellowship was fruitful enough not only to implement independent research ideas in my home country of India, but also to build long-lasting research networks with the BGS. I am still in contact with Michael and now we are collaborating to work on global road dust pollution. I enjoyed every moment at the BGS, whether it was working in the laboratory or hanging out with colleagues in the canteen.’

Dr Munir Zia – Fauji Fertiliser Company (FFC), Pakistan

‘I had an opportunity to get hands-on experience for trace element analyses of soils, waters and grains to better understand soil-to-transfer of key minerals' says Munir Zia. 'Another area of professional development was to learn about the handling of large amount of analytical data and its GIS integration. After completion of a Fulbright Scientist Award, FFC assigned me as the R&D Coordinator however, being a scientist I was lacking in necessary management experience relevant to R&D. The professional training at BGS in 2012 enabled me to introduce collection of georeferenced soil samples across Pakistan. The FFC farmer education programme collects and analyses 25,000 soil samples every year, therefore, introduction of geo-referencing will enable us to transform this effort into national scale soil fertility maps. Generation of such maps will enable FFC to pinpoint areas that are deficient in trace minerals and other essential elements. Our effort in developing national scale maps will help strengthen crops bio-fortification programmes being run by HarvestPlus Pakistan, to which we are a local partner. We are also in a process to establish a Fertilizer Research Centre in Pakistan, the first of its kind in this country. The opportunity provided by CSCUK was invaluable in developing a network of partners and skills training. Since my first visit to BGS in 2012, I have returned several times through alternative funding opportunities to continue a joint programme of research and more recently with academics at the University of Nottingham through the joint Centre for Environmental Geochemistry’


Grace Manzeke – University of Zimbabwe

‘Smallholder rain-fed agriculture supports livelihoods for more than 60% of the Zimbabwean population' says Grace Manzeke. 'Like any system, it faces various challenges which include poor soils, low crop yields and climate change and variability among others. Working in these communities for over 10 years now, the Soil Fertility Consortium for Southern Africa (SOFECSA) at the University of Zimbabwe has been promoting impact-oriented research for development through a multi-institutional disciplinary approach. This has opened an avenue of research which could be explored in these farming communities, some of which require external regional and international support such as relevant skills and knowledge to address the inherent and emerging challenges.’

‘As a Research Fellow for SOFECSA, I undertook a Commonwealth Professional Fellowship award in Spring of 2015 with the Inorganic Geochemistry team at BGS and the University of Nottingham (UoN), through the joint Centre for Environmental Geochemistry (CEG). I gained relevant skills and knowledge on modern sampling design and implementation, database management, GIS, geostatistics and laboratory quality assurance techniques. The BGS is a centre for technology excellence with laboratories equipped with modern instruments and dedicated technologically sound staff, statisticians and geochemists relevant to support emerging research on alleviating extreme poverty and malnutrition in Zimbabwe smallholder communities and the region. This support is fundamental for my new Royal Society-DFID (http://britgeopeople.blogspot.co.uk/2015/01/geochemistry-in-sub-saharan-africa-by.html) – PhD project on geospatial characterisation of micronutrient deficiency in Zimbabwean soils. Results generated during the CSCUK training showed that our soils are very acidic with low total Zn concentrations of 29.1 mg kg-1 implying the need for agricultural interventions to enhance crop productivity.  I would recommend the future for soil science research in Zimbabwe to be inclined towards use of stable isotopes e.g. 70Zn for detecting available soil nutrients to promote soil-to-plant transfer to combat regional “hidden hunger” estimated at 40%. This is a novel approach which is currently implemented at the UoN and would recommend for sustainable agricultural interventions in Zimbabwe and Sub-Saharan Africa. The CSCUK project enabled me to develop sustainable collaborative links with BGS and UoN, and with another CSCUK Fellow, Salome Mkandwire, a database expert hosted by the Inorganic Geochemistry team (http://britgeopeople.blogspot.co.uk/2015/05/managing-malawis-spatial-data-by-carl.html) from the Malawi Department of Surveys.’

For all of the Commonwealth Fellows, it was important to expose them to the variety of opportunities in the UK, from work through to visiting the variety of tourist and scenic locations. They were initially helped in doing so, but soon unleashed the enthusiasm for exploring the UK and grew to enjoy the environment and culture. From a host perspective, there are the obvious opportunities to develop collaborative networks and partners, but also an opportunity for other members of a team or junior scientists to broaden their horizons through training or working alongside Fellows from overseas.

By Dr Michael Watts, Head of Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey.

Papers from the Fellows.

Chatterjee M, Sklenars L, Chenery SR, Watts MJ, Rakshit D and Sarkar SK. (2014). Assessment of Total Mercury (HgT) in sediments and biota of Indian Sundarban Wetland and adjacent coastal regions, Environment and Natural Research, 4(2): 50-64

Zia M, Watts MJ, Gardner A, Chenery SR. (2015). Iodine status of soils, grain crops and irrigation waters in Pakistan, Environmental Earth Sciences, 73, 7995-8008.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.