SEGH Articles

World Iodine Association first international conference, Pisa 2017

04 January 2018
In November 2017 a group of students from BGS and the University of Nottingham researching iodine geochemistry and its affect on human health attended the first international conference of the World Iodine Association - Iodine in Food Systems and Health - in Pisa, Italy. Olivier Humphrey, undertaking his PhD with the Center for Environmental Geochemistry, reports on his time at the event.


Posing in front of the leaning tower of Pisa- I couldn’t resist!

Delegates from BGS and the University of Nottingham at the World Iodine Association conference

Iodine is an essential micronutrient involved in the production of the thyroid hormones, essential for all mammalian life. Approximately one-third of the world’s population are at risk of iodine deficiency disorders (IDDs). The most common outcome of iodine deficiency is goitre, a swelling of the thyroid gland, however, the most severe effects occur during fetal development; leading to stillbirth, cretinism and mental impairment. The most widely-used method for reducing IDD is implementing iodised salt programmes; however, poor treatment, food processing, losses through volatisation and implementation reduces its effectiveness.

The conference welcome reception was held at the Domus Comeliana, a charming house situated next to the world famous leaning tower. It was here we were given introductory presentations regarding the history of iodine and human health by Dr Elizabeth Pearce. The great work conducted by various organisations towards eliminating global IDD was highlighted by Prof Michael B Zimmermann. After these opening talks, we had our iodine enriched gala dinner consisting of fish, cheeses and, of course, pasta.

The remainder of the conference was held at the Palazzo dei Congressi where talks were divided into multiple sessions addressing various iodine research related themes. The presentations given covered a wide range of topics including technical hurdles, salt iodisation, international stakeholder organisations’ opinions, before looking at iodine in soil, water and atmosphere. The next step, after looking at iodine in the environment, is to assess iodine in food and health. Dr Sarah Bath, a lecturer in public health nutrition at the University of Surrey, discussed nutritional recommendations for iodine and whether they can be met via dietary sources. Alongside these presentations, there were talks monitoring the iodine status of populations, industrial applications and iodine deficiency and excess in humans and animals.

Posing in front of the leaning tower of Pisa- I couldn’t resist!

The final session focused on agronomic biofortification of agricultural produce with iodine and I presented my current work investigating iodine uptake, translocation and storage mechanisms in spinach. Not only was this the World Iodine Association’s first international conference, it was the first conference I had given a presentation at! Despite the wide use of iodised salt, approximately 2 billion people are at risk of IDD, therefore we need to improve and add to current preventative treatments. The fortification of food with iodine is another strategy that can be used to reduce the risk of IDD, however, there is a lack of understanding of how iodine behaves in plants. In general, iodine has positive effects on plants when applied at a low concentration in soils, nutrient solution or foliar sprays. Despite the apparent positive effects on plant growth, the uptake pathways of iodine remain unknown and translocation pathways once absorbed by plants are still disputed. In my research, I have conducted a number of experiments to grasp a fundamental understanding of iodine-plant dynamics and have used isotopically labelled iodine tracers to trace the movement through spinach roots to show that uptake follows both active and passive pathways. This work, and recently published papers, indicates that agronomic biofortification could have a much larger role in tackling IDDs.

Whilst in Pisa, we also visited some key tourist spots, including: the square of miracles where we saw the Cathedral of Santa Maria Assunta - Duomo, the Baptistery, the Camposanto and the Tower, ate pizza and gelato (when in Rome…). We also managed to spend an afternoon in Lucca, a small city famous for its intact Renaissance-era city walls that surround the city. We wandered around and through the city before climbing the Guinigi Tower.


   Posing in front of the leaning tower of Pisa
   -I couldn’t resist!


My overall impression was that the conference was a great success, the quality of all talks were fantastic and the inclusion of researchers from various backgrounds all investigating iodine was brilliant.

The PhD is supervised under the umbrella of the Centre for Environmental Geochemistry: Dr Scott Young, Dr Liz Bailey and Professor Neil Crout (University of Nottingham) and Dr Louise Ander and Dr Michael Watts (BGS)

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea 2018-08-01


    This study examined microplastic particles present in the benthic invertebrates Sternaspis scutata, Magelona cinta (deposit feeders) and Tellina sp. (suspension feeder) from the surface sediments of off-Kochi, southwest coast of India. The microplastic particles and thread-like fibres detected in these organisms were identified to be polystyrene by using DXR Raman microscope. Examination of the microplastic particle in Sternaspis scutata by epifluorescent microscopy showed fragmentation marks on the surface suggesting that the microplastic particle was degraded/weathered in nature. The study provides preliminary evidence of the presence of microplastics in benthic fauna from the coastal waters of India. However, further studies are required to understand the sources, distribution, fate and toxicity of the different types of microplastics in benthic invertebrates in order to identify any potential threats to higher trophic level organisms.

  • Mercury bioaccumulation in arthropods from typical community habitats in a zinc-smelting area 2018-08-01


    This study assessed the enrichment of mercury in the food web from the different community habitats in a zinc-smelting area of China. We used a nitrogen stable isotope technique to analyze trophic level relationships among arthropods and found that the first trophic level consisted of plants in the different community habitats, the second trophic level consisted of herbivores such as locusts and grasshoppers (primary consumers), and the third trophic level included spiders and mantes (secondary consumers). Mercury enrichment in the primary consumers was not evident, but enrichment in arthropods of the third trophic level was significant. The average of enrichment coefficients in spiders and mantes was greater than 1. The δ15N values indicated that mercury concentrations accumulated from primary producers to top carnivorous arthropods increased. In this zinc-smelting area, the biological amplification of mercury in the food web is significant. It is reasonable to assume that humans, located at the top of the food chain, are exposed to biomagnified levels of mercury.

  • Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China 2018-08-01


    It is necessary to identify the hydrogeochemical processes and analyze the causes of groundwater pollution due to the lack of knowledge about the groundwater chemical characteristics and the endemic diseases caused by groundwater pollution in the northern Ordos Cretaceous Basin. In this paper, groundwater chemical facies were obtained using the piper trilinear diagram based on the analysis of 190 samples. The hydrogeochemical processes were identified using ionic ratio coefficient, such as leaching, evaporation and condensation. The causes and sources of groundwater pollution were analyzed by correspondence analysis, and the spatial distribution and enrichment reasons of fluoride ion were analyzed considering the endemic fluorosis emphatically. The results show that leaching, evaporation and condensation, mixing, and anthropogenic activities all had significant impact on hydrogeochemical processes in the study area. However, cation exchange and adsorption effects were strong in the S2 and S3 groundwater flow systems, but weak in S1. Groundwater is mainly polluted by Mn and CODMn in the study area. The landfill leachate, domestic sewage, and other organic pollutants, excessive use of pesticides and fertilizers in agriculture, and pyrite oxidation from long-term and large-scale exploitation of coal are the sources of groundwater pollution. The S1 has the highest degree of groundwater pollution, followed by S2 and S3. High concentration of fluoride ion is mainly distributed in the north and west of study area. Evaporation and condensation and groundwater chemistry component are the most important causes of fluoride ion enrichment. The results obtained in this study will be useful for understanding the groundwater quality for effective management and utilization of groundwater resources and assurance of drinking water safety.