SEGH Articles

World Iodine Association first international conference, Pisa 2017

04 January 2018
In November 2017 a group of students from BGS and the University of Nottingham researching iodine geochemistry and its affect on human health attended the first international conference of the World Iodine Association - Iodine in Food Systems and Health - in Pisa, Italy. Olivier Humphrey, undertaking his PhD with the Center for Environmental Geochemistry, reports on his time at the event.

 

Posing in front of the leaning tower of Pisa- I couldn’t resist!

Delegates from BGS and the University of Nottingham at the World Iodine Association conference


Iodine is an essential micronutrient involved in the production of the thyroid hormones, essential for all mammalian life. Approximately one-third of the world’s population are at risk of iodine deficiency disorders (IDDs). The most common outcome of iodine deficiency is goitre, a swelling of the thyroid gland, however, the most severe effects occur during fetal development; leading to stillbirth, cretinism and mental impairment. The most widely-used method for reducing IDD is implementing iodised salt programmes; however, poor treatment, food processing, losses through volatisation and implementation reduces its effectiveness.

The conference welcome reception was held at the Domus Comeliana, a charming house situated next to the world famous leaning tower. It was here we were given introductory presentations regarding the history of iodine and human health by Dr Elizabeth Pearce. The great work conducted by various organisations towards eliminating global IDD was highlighted by Prof Michael B Zimmermann. After these opening talks, we had our iodine enriched gala dinner consisting of fish, cheeses and, of course, pasta.

The remainder of the conference was held at the Palazzo dei Congressi where talks were divided into multiple sessions addressing various iodine research related themes. The presentations given covered a wide range of topics including technical hurdles, salt iodisation, international stakeholder organisations’ opinions, before looking at iodine in soil, water and atmosphere. The next step, after looking at iodine in the environment, is to assess iodine in food and health. Dr Sarah Bath, a lecturer in public health nutrition at the University of Surrey, discussed nutritional recommendations for iodine and whether they can be met via dietary sources. Alongside these presentations, there were talks monitoring the iodine status of populations, industrial applications and iodine deficiency and excess in humans and animals.

Posing in front of the leaning tower of Pisa- I couldn’t resist!

The final session focused on agronomic biofortification of agricultural produce with iodine and I presented my current work investigating iodine uptake, translocation and storage mechanisms in spinach. Not only was this the World Iodine Association’s first international conference, it was the first conference I had given a presentation at! Despite the wide use of iodised salt, approximately 2 billion people are at risk of IDD, therefore we need to improve and add to current preventative treatments. The fortification of food with iodine is another strategy that can be used to reduce the risk of IDD, however, there is a lack of understanding of how iodine behaves in plants. In general, iodine has positive effects on plants when applied at a low concentration in soils, nutrient solution or foliar sprays. Despite the apparent positive effects on plant growth, the uptake pathways of iodine remain unknown and translocation pathways once absorbed by plants are still disputed. In my research, I have conducted a number of experiments to grasp a fundamental understanding of iodine-plant dynamics and have used isotopically labelled iodine tracers to trace the movement through spinach roots to show that uptake follows both active and passive pathways. This work, and recently published papers, indicates that agronomic biofortification could have a much larger role in tackling IDDs.

Whilst in Pisa, we also visited some key tourist spots, including: the square of miracles where we saw the Cathedral of Santa Maria Assunta - Duomo, the Baptistery, the Camposanto and the Tower, ate pizza and gelato (when in Rome…). We also managed to spend an afternoon in Lucca, a small city famous for its intact Renaissance-era city walls that surround the city. We wandered around and through the city before climbing the Guinigi Tower.

 

   Posing in front of the leaning tower of Pisa
   -I couldn’t resist!

 

My overall impression was that the conference was a great success, the quality of all talks were fantastic and the inclusion of researchers from various backgrounds all investigating iodine was brilliant.

The PhD is supervised under the umbrella of the Centre for Environmental Geochemistry: Dr Scott Young, Dr Liz Bailey and Professor Neil Crout (University of Nottingham) and Dr Louise Ander and Dr Michael Watts (BGS)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil 2018-02-22

    Abstract

    The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

  • 2017 Outstanding Reviewers 2018-02-21
  • Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia) 2018-02-13

    Abstract

    Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.