SEGH Articles

World Iodine Association first international conference, Pisa 2017

04 January 2018
In November 2017 a group of students from BGS and the University of Nottingham researching iodine geochemistry and its affect on human health attended the first international conference of the World Iodine Association - Iodine in Food Systems and Health - in Pisa, Italy. Olivier Humphrey, undertaking his PhD with the Center for Environmental Geochemistry, reports on his time at the event.

 

Posing in front of the leaning tower of Pisa- I couldn’t resist!

Delegates from BGS and the University of Nottingham at the World Iodine Association conference


Iodine is an essential micronutrient involved in the production of the thyroid hormones, essential for all mammalian life. Approximately one-third of the world’s population are at risk of iodine deficiency disorders (IDDs). The most common outcome of iodine deficiency is goitre, a swelling of the thyroid gland, however, the most severe effects occur during fetal development; leading to stillbirth, cretinism and mental impairment. The most widely-used method for reducing IDD is implementing iodised salt programmes; however, poor treatment, food processing, losses through volatisation and implementation reduces its effectiveness.

The conference welcome reception was held at the Domus Comeliana, a charming house situated next to the world famous leaning tower. It was here we were given introductory presentations regarding the history of iodine and human health by Dr Elizabeth Pearce. The great work conducted by various organisations towards eliminating global IDD was highlighted by Prof Michael B Zimmermann. After these opening talks, we had our iodine enriched gala dinner consisting of fish, cheeses and, of course, pasta.

The remainder of the conference was held at the Palazzo dei Congressi where talks were divided into multiple sessions addressing various iodine research related themes. The presentations given covered a wide range of topics including technical hurdles, salt iodisation, international stakeholder organisations’ opinions, before looking at iodine in soil, water and atmosphere. The next step, after looking at iodine in the environment, is to assess iodine in food and health. Dr Sarah Bath, a lecturer in public health nutrition at the University of Surrey, discussed nutritional recommendations for iodine and whether they can be met via dietary sources. Alongside these presentations, there were talks monitoring the iodine status of populations, industrial applications and iodine deficiency and excess in humans and animals.

Posing in front of the leaning tower of Pisa- I couldn’t resist!

The final session focused on agronomic biofortification of agricultural produce with iodine and I presented my current work investigating iodine uptake, translocation and storage mechanisms in spinach. Not only was this the World Iodine Association’s first international conference, it was the first conference I had given a presentation at! Despite the wide use of iodised salt, approximately 2 billion people are at risk of IDD, therefore we need to improve and add to current preventative treatments. The fortification of food with iodine is another strategy that can be used to reduce the risk of IDD, however, there is a lack of understanding of how iodine behaves in plants. In general, iodine has positive effects on plants when applied at a low concentration in soils, nutrient solution or foliar sprays. Despite the apparent positive effects on plant growth, the uptake pathways of iodine remain unknown and translocation pathways once absorbed by plants are still disputed. In my research, I have conducted a number of experiments to grasp a fundamental understanding of iodine-plant dynamics and have used isotopically labelled iodine tracers to trace the movement through spinach roots to show that uptake follows both active and passive pathways. This work, and recently published papers, indicates that agronomic biofortification could have a much larger role in tackling IDDs.

Whilst in Pisa, we also visited some key tourist spots, including: the square of miracles where we saw the Cathedral of Santa Maria Assunta - Duomo, the Baptistery, the Camposanto and the Tower, ate pizza and gelato (when in Rome…). We also managed to spend an afternoon in Lucca, a small city famous for its intact Renaissance-era city walls that surround the city. We wandered around and through the city before climbing the Guinigi Tower.

 

   Posing in front of the leaning tower of Pisa
   -I couldn’t resist!

 

My overall impression was that the conference was a great success, the quality of all talks were fantastic and the inclusion of researchers from various backgrounds all investigating iodine was brilliant.

The PhD is supervised under the umbrella of the Centre for Environmental Geochemistry: Dr Scott Young, Dr Liz Bailey and Professor Neil Crout (University of Nottingham) and Dr Louise Ander and Dr Michael Watts (BGS)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01

    Abstract

    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01

    Abstract

    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.