SEGH Articles

Zoo Elephants Aid Wild counterparts in the Kruger National Park

04 November 2016
Eight zoo elephants from Knowsley Safari Park and Twycross Zoo have been contributing to work that is being carried out to reduce Human-Elephant Conflict surrounding the Kruger National Park.

Eight zoo elephants from Knowsley Safari Park and Twycross Zoo have been contributing to work that is being carried out to reduce Human-Elephant Conflict surrounding the Kruger National Park. This unique, interdisciplinary project involves environmental geochemistry, plant science, and animal health between a range of partners including BGS and the University of Nottingham (UoN) through the joint Centre for Environmental Geochemistry (http://britgeopeople.blogspot.co.uk/2016/05/are-land-use-decisions-by-african.html).

The working hypothesis is that the elephants in this study group originally from the Kruger National Park are deficient in phosphorus, owing to a deficiency in the (soil and) forage. This drives the elephants to supplement their phosphorus from the water, soil and forage on land surrounding a phosphate mine in close proximity to the National Park. En-route to the phosphorus mine, elephant incursion into nearby human settlements has resulted in human-elephant conflict, causing risk of injury and lost income. The results of the project may help to inform  key locations in the elephants’ home range where mineral-supplemented forage or mineral licks may be placed to reduce the drive to seek additional sources of phosphorus, thereby reducing human-elephant conflict. Samples (hair, toenail, blood and urine) from the UK elephants will be used to validate their possible use as biomarkers of mineral status in the wild: This is a brilliant example of the contribution captive animals can make to directly benefit research on their wild counterparts.

 

 

Five UK zoos have kindly agreed to assist with and contribute samples to this research with each zoo being visited four times throughout the year to collect necessary samples from the elephants and from items which the elephants consume from their environments in the zoos. Biological samples required include toenails, faecal samples, serum and tail hair. Environmental samples include all food items (browse, hay, grass, pellets and fruit and vegetables) consumed and soil and water samples to assess the influence of geochemistry on dietary intake and land use decisions. These will be analysed for “essential mineral” content (e.g. zinc, iron) to estimate dietary intake and possible seasonal changes in browse, grass and hay over the year. These data will be related to mineral measurements in the elephants’ biological samples to validate methodologies for use and comparison to wild elephants. 

In June, the second set of UK sample collection took place at Knowsley Safari Park, having commenced a first seasonal cycle in April at that facility. It was especially exciting to collect a longitudinal toenail sample from one individual that will be analysed by spatial analysis using techniques such as laser ablation coupled to ICP-MS or ion beam analysis to give an indication of mineral status over time in that elephant. We would like to thank all the elephant team at Knowsley Safari Park for their assistance with procuring samples and enthusiasm for the research and of course the elephants for their ongoing cooperation. We then moved on to Twycross Zoo for the first very successful sample collection at this facility. We would like to thank all of the elephant team at Twycross Zoo, especially Team Leader Andy Durham, and the veterinary team for their assistance.

Funding

Thanks to the NERC Envision Doctoral Training Programme, the Hermes Trust and Royal Society International Exchange scheme. The project is based on a Centre for Environmental Geochemistry collaboration between the Inorganic Geochemistry (Dr Michael Watts) and Stable Isotopes teams (Professor Melanie Leng) at BGS and Schools of Veterinary (Dr Lisa Yon) and Biosciences (Professor Martin Broadley & Professor Simon Langley-Evans) at the University of Nottingham. The collaboration is further strengthened by partners in five UK zoos and with partners in South Africa who have been studying elephant populations there for the past two decades, tracking elephant movements using GPS and GMS to better understand their habitat use.  In addition, Dr Ellen Dierenfeld (E.S.Dierenfeld Nutrition Consulting, LLC) is an internationally renowned expert on elephant nutrition and a co-investigator on this project.

I am very excited having started my PhD full time in October, having contributed to activities over the summer months in advance. I left my previous employment at the Zoological Society of London (ZSL), where I was Nutrition and Research Officer at London and Whipsnade Zoos for the past 4 years. My role included maintaining accurate diet records for all the animals within the collection, reviewing animal diets based on clinical need, working with procurement to source the myriad of food items needed to feed a zoo and working with keepers to implement diet changes. I continue to be a Research Advisor for the BIAZA Elephant Focus Group and aid the EAZA Elephant TAG Chair with the strategic planning of the TAG giving input into the direction of the group. This experience has put me in touch with the global captive elephant community and given me an understanding as to the work zoos can do to benefit wild counterparts. I look forward to starting this new challenge, collaborating with several UK zoos to directly advance field research and to employ a multi-disciplinary approach to the PhD research question – “Are land-use decisions made by elephants influenced by geochemistry?”

by Fiona Sach, PhD Student, NERC Envision DTP, BGS & University of Nottingham

More information will follow at:
http://www.environmentalgeochemistry.org/research/BiochemicalCycling.html 
https://www.knowsleysafariexperience.co.uk/ 
@KnowsleySafari, facebook.com/knowsleysafari 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.