SEGH Articles

Zoo Elephants Aid Wild counterparts in the Kruger National Park

04 November 2016
Eight zoo elephants from Knowsley Safari Park and Twycross Zoo have been contributing to work that is being carried out to reduce Human-Elephant Conflict surrounding the Kruger National Park.

Eight zoo elephants from Knowsley Safari Park and Twycross Zoo have been contributing to work that is being carried out to reduce Human-Elephant Conflict surrounding the Kruger National Park. This unique, interdisciplinary project involves environmental geochemistry, plant science, and animal health between a range of partners including BGS and the University of Nottingham (UoN) through the joint Centre for Environmental Geochemistry (http://britgeopeople.blogspot.co.uk/2016/05/are-land-use-decisions-by-african.html).

The working hypothesis is that the elephants in this study group originally from the Kruger National Park are deficient in phosphorus, owing to a deficiency in the (soil and) forage. This drives the elephants to supplement their phosphorus from the water, soil and forage on land surrounding a phosphate mine in close proximity to the National Park. En-route to the phosphorus mine, elephant incursion into nearby human settlements has resulted in human-elephant conflict, causing risk of injury and lost income. The results of the project may help to inform  key locations in the elephants’ home range where mineral-supplemented forage or mineral licks may be placed to reduce the drive to seek additional sources of phosphorus, thereby reducing human-elephant conflict. Samples (hair, toenail, blood and urine) from the UK elephants will be used to validate their possible use as biomarkers of mineral status in the wild: This is a brilliant example of the contribution captive animals can make to directly benefit research on their wild counterparts.

 

 

Five UK zoos have kindly agreed to assist with and contribute samples to this research with each zoo being visited four times throughout the year to collect necessary samples from the elephants and from items which the elephants consume from their environments in the zoos. Biological samples required include toenails, faecal samples, serum and tail hair. Environmental samples include all food items (browse, hay, grass, pellets and fruit and vegetables) consumed and soil and water samples to assess the influence of geochemistry on dietary intake and land use decisions. These will be analysed for “essential mineral” content (e.g. zinc, iron) to estimate dietary intake and possible seasonal changes in browse, grass and hay over the year. These data will be related to mineral measurements in the elephants’ biological samples to validate methodologies for use and comparison to wild elephants. 

In June, the second set of UK sample collection took place at Knowsley Safari Park, having commenced a first seasonal cycle in April at that facility. It was especially exciting to collect a longitudinal toenail sample from one individual that will be analysed by spatial analysis using techniques such as laser ablation coupled to ICP-MS or ion beam analysis to give an indication of mineral status over time in that elephant. We would like to thank all the elephant team at Knowsley Safari Park for their assistance with procuring samples and enthusiasm for the research and of course the elephants for their ongoing cooperation. We then moved on to Twycross Zoo for the first very successful sample collection at this facility. We would like to thank all of the elephant team at Twycross Zoo, especially Team Leader Andy Durham, and the veterinary team for their assistance.

Funding

Thanks to the NERC Envision Doctoral Training Programme, the Hermes Trust and Royal Society International Exchange scheme. The project is based on a Centre for Environmental Geochemistry collaboration between the Inorganic Geochemistry (Dr Michael Watts) and Stable Isotopes teams (Professor Melanie Leng) at BGS and Schools of Veterinary (Dr Lisa Yon) and Biosciences (Professor Martin Broadley & Professor Simon Langley-Evans) at the University of Nottingham. The collaboration is further strengthened by partners in five UK zoos and with partners in South Africa who have been studying elephant populations there for the past two decades, tracking elephant movements using GPS and GMS to better understand their habitat use.  In addition, Dr Ellen Dierenfeld (E.S.Dierenfeld Nutrition Consulting, LLC) is an internationally renowned expert on elephant nutrition and a co-investigator on this project.

I am very excited having started my PhD full time in October, having contributed to activities over the summer months in advance. I left my previous employment at the Zoological Society of London (ZSL), where I was Nutrition and Research Officer at London and Whipsnade Zoos for the past 4 years. My role included maintaining accurate diet records for all the animals within the collection, reviewing animal diets based on clinical need, working with procurement to source the myriad of food items needed to feed a zoo and working with keepers to implement diet changes. I continue to be a Research Advisor for the BIAZA Elephant Focus Group and aid the EAZA Elephant TAG Chair with the strategic planning of the TAG giving input into the direction of the group. This experience has put me in touch with the global captive elephant community and given me an understanding as to the work zoos can do to benefit wild counterparts. I look forward to starting this new challenge, collaborating with several UK zoos to directly advance field research and to employ a multi-disciplinary approach to the PhD research question – “Are land-use decisions made by elephants influenced by geochemistry?”

by Fiona Sach, PhD Student, NERC Envision DTP, BGS & University of Nottingham

More information will follow at:
http://www.environmentalgeochemistry.org/research/BiochemicalCycling.html 
https://www.knowsleysafariexperience.co.uk/ 
@KnowsleySafari, facebook.com/knowsleysafari 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.