SEGH Articles

Zoo Elephants Aid Wild counterparts in the Kruger National Park

04 November 2016
Eight zoo elephants from Knowsley Safari Park and Twycross Zoo have been contributing to work that is being carried out to reduce Human-Elephant Conflict surrounding the Kruger National Park.

Eight zoo elephants from Knowsley Safari Park and Twycross Zoo have been contributing to work that is being carried out to reduce Human-Elephant Conflict surrounding the Kruger National Park. This unique, interdisciplinary project involves environmental geochemistry, plant science, and animal health between a range of partners including BGS and the University of Nottingham (UoN) through the joint Centre for Environmental Geochemistry (

The working hypothesis is that the elephants in this study group originally from the Kruger National Park are deficient in phosphorus, owing to a deficiency in the (soil and) forage. This drives the elephants to supplement their phosphorus from the water, soil and forage on land surrounding a phosphate mine in close proximity to the National Park. En-route to the phosphorus mine, elephant incursion into nearby human settlements has resulted in human-elephant conflict, causing risk of injury and lost income. The results of the project may help to inform  key locations in the elephants’ home range where mineral-supplemented forage or mineral licks may be placed to reduce the drive to seek additional sources of phosphorus, thereby reducing human-elephant conflict. Samples (hair, toenail, blood and urine) from the UK elephants will be used to validate their possible use as biomarkers of mineral status in the wild: This is a brilliant example of the contribution captive animals can make to directly benefit research on their wild counterparts.



Five UK zoos have kindly agreed to assist with and contribute samples to this research with each zoo being visited four times throughout the year to collect necessary samples from the elephants and from items which the elephants consume from their environments in the zoos. Biological samples required include toenails, faecal samples, serum and tail hair. Environmental samples include all food items (browse, hay, grass, pellets and fruit and vegetables) consumed and soil and water samples to assess the influence of geochemistry on dietary intake and land use decisions. These will be analysed for “essential mineral” content (e.g. zinc, iron) to estimate dietary intake and possible seasonal changes in browse, grass and hay over the year. These data will be related to mineral measurements in the elephants’ biological samples to validate methodologies for use and comparison to wild elephants. 

In June, the second set of UK sample collection took place at Knowsley Safari Park, having commenced a first seasonal cycle in April at that facility. It was especially exciting to collect a longitudinal toenail sample from one individual that will be analysed by spatial analysis using techniques such as laser ablation coupled to ICP-MS or ion beam analysis to give an indication of mineral status over time in that elephant. We would like to thank all the elephant team at Knowsley Safari Park for their assistance with procuring samples and enthusiasm for the research and of course the elephants for their ongoing cooperation. We then moved on to Twycross Zoo for the first very successful sample collection at this facility. We would like to thank all of the elephant team at Twycross Zoo, especially Team Leader Andy Durham, and the veterinary team for their assistance.


Thanks to the NERC Envision Doctoral Training Programme, the Hermes Trust and Royal Society International Exchange scheme. The project is based on a Centre for Environmental Geochemistry collaboration between the Inorganic Geochemistry (Dr Michael Watts) and Stable Isotopes teams (Professor Melanie Leng) at BGS and Schools of Veterinary (Dr Lisa Yon) and Biosciences (Professor Martin Broadley & Professor Simon Langley-Evans) at the University of Nottingham. The collaboration is further strengthened by partners in five UK zoos and with partners in South Africa who have been studying elephant populations there for the past two decades, tracking elephant movements using GPS and GMS to better understand their habitat use.  In addition, Dr Ellen Dierenfeld (E.S.Dierenfeld Nutrition Consulting, LLC) is an internationally renowned expert on elephant nutrition and a co-investigator on this project.

I am very excited having started my PhD full time in October, having contributed to activities over the summer months in advance. I left my previous employment at the Zoological Society of London (ZSL), where I was Nutrition and Research Officer at London and Whipsnade Zoos for the past 4 years. My role included maintaining accurate diet records for all the animals within the collection, reviewing animal diets based on clinical need, working with procurement to source the myriad of food items needed to feed a zoo and working with keepers to implement diet changes. I continue to be a Research Advisor for the BIAZA Elephant Focus Group and aid the EAZA Elephant TAG Chair with the strategic planning of the TAG giving input into the direction of the group. This experience has put me in touch with the global captive elephant community and given me an understanding as to the work zoos can do to benefit wild counterparts. I look forward to starting this new challenge, collaborating with several UK zoos to directly advance field research and to employ a multi-disciplinary approach to the PhD research question – “Are land-use decisions made by elephants influenced by geochemistry?”

by Fiona Sach, PhD Student, NERC Envision DTP, BGS & University of Nottingham

More information will follow at: 


Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18


    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16


    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14


    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.