SEGH Events

15th International Congress of the Geological Society of Greece

22 May 2019
Athens, Greece
The International Congresses of the Geological Society of Greece are multidisciplinary earth science events, focusing on, but not limited to, the broader Aegean region and its surroundings, with the view to highlighting the contribution of geosciences to the study of natural resources, natural hazards and environment.

The 15th International Congress of the Geological Society of Greece – GSG2019: “Understanding and Protecting our Living Planet Earth”, will be held at the premises of Harokopio University, Athens, Greece, between 22-24 May 2019. SEGH will be joint convening the special session T4.S1: Geochemical mapping for environmental and resource management.

(Image credit: GSG 2019)

Geochemical mapping for environmental and resource management (T4.S1)

(Jointly organized by the IUGS Commission on Global Geochemical Baselines (CGGB); the Society for Environmental Geochemistry and Health (SEGH); and the EuroGeoSurveys Geochemistry Expert Group)

Conveners: Ar. Argyraki, (NKUA), A. Liakopoulos (IGME), A. Demetriades (IUGS-CGGB)

Keynote Speakers: Anna Ladenberger, Geological Survey of Sweden and Andrew Hursthouse, Univ. of the West of Scotland, UK

Session description: Geochemical maps are the principal means of presenting the spatial distribution of chemical elements and compounds in materials occurring at or below the Earth’s surface. The patterns revealed by geochemical mapping can provide information on a wide range of Earth processes at different scales, from nanometres to thousands of kilometres.

For example, continental- and regional-scale geochemical projects can identify districts of enhanced mineral potential within which targeted exploration can be conducted. They also provide the geochemical baseline that is required to evaluate effectively local-scale environmental projects. Mapping at a sub-mineral-grain scale can provide a basis for understanding mineralisation processes and to determine optimal strategies for extraction of valuable target elements, while the sub-micron distribution of trace elements in Earth materials can provide insights into their speciation, environmental fate and bioavailability. The focus of the session will be on geochemical surveys at all mapping scales for the study of the environment and natural resources. Our main objective is to provide the opportunity for young researchers to present their work and benefit from the interaction with well- established applied geochemistry experts. We particularly welcome studies that have combined geochemical data with data from other sources in order to provide tools for effective environmental and resource management.

For more information, please visit the GSG 2019 website

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14


    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13


    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13


    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.