Become a member of SEGH


Join a lively, research focussed network, which values and encourages interdisciplinary work across the spectrum of interactions between humans and the environment. 

SEGH has established a series of international conferences and meetings and promotes task force activities to address research and knowledge gaps in the area.  SEGH works with other societies and interest groups to further a better understanding of human interaction.  SEGH members receive a discount against SEGH conference fees.

SEGH has strong links to training and research projects, with a strong emphasis on encouraging young scientists.  Opportunities are developed to enable young researchers to participate in events where experienced professionals from industry and the public sector and academics meet under informal conditions to discuss research findings and relevant gaps in knowledge.

SEGH supports its own cutting edge, impact factor journal: Environmental Geochemistry and Health. In cooperation with Springer, SEGH members can enjoy online access to the journal.

You are warmly invited to join us as returning members or new applicants to the SEGH community.

Full membership: £45, Retired Membership: £25, Student membership: £25 

(Both Full, Retired and Student membership with EGH on-line journal access - please note this includes access to the back catalogue)

Membership without EGH journal: £25

Secure payments are handled by SagePay and will be charged in £GBP, but you will be billed in your local currency.

Membership runs from January to January.  You will need to renew each year using the Join Us button on the homepage and re-enter your details to ensure we have up-to-date information.

1. Personal Details

2. Membership Infomation

3. Billing Address

NOTE: If you have a NON UK post code you should enter 000 in the billing post code field.

4. Shipping Address

Use billing address
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Determining soil quality in urban agricultural regions by soil enzyme-based index 2017-06-26


    Urban agricultural soils are highly variable, and careful selection of sensitive indicators is needed for the assessment of soil quality. This study is proposed to develop an index based on soil enzyme activities for assessing the quality of urban agricultural soils. Top soils were collected from urban agricultural areas of Korea, and soil chemical properties, texture, microbial fatty acids, and enzyme activities were determined. The soils belonged to five textural classes with the highest frequency of sandy loam. There was no clear correlation between the soil chemical properties and soil microbial properties. Principal component analysis (PCA) and factor analysis were applied to microbial groups for identification of microbial community variation in soils. Two soil groups, namely group 1 (G1) and group 2 (G2), based on microbial community abundance were examined by PCA, and those were more prominent in factor analysis. The G1 soils showed higher microbial community abundance than G2 soils. The canonical discriminant analysis was applied to the enzyme activities of sandy loam soil to develop an index, and the index validation was confirmed using the unused soils and published data. The high-quality soils in published literature assigned the high valued index. Microbial fatty acids and soil enzyme activities can be suitable indicators for soil quality evaluation of urban agricultural soils.

  • Study of the interactions of dissolved organic matter with zinc ion and the impact of competitive metal ions (Ca 2+ and Mg 2+ ) by in situ absorbance 2017-06-22


    The bioavailability and toxicity of zinc to aquatic life depend on dissolved organic matter (DOM), such as Suwannee River Fulvic Acid (SRFA), which plays an important role in the speciation of zinc. This study examined reactions of SRFA with zinc at different concentrations from pH 3.0 to 9.0, and competitive binding of calcium/magnesium and zinc to SRFA at pH 6.0, using in situ absorbance. Interactions of Zn2+ with SRFA chromophores were evidenced by the emergence of features in Zn-differential spectra. Among all Zn2+–SRFA systems, dominant peaks, located at 235, 275 and 385 nm, and the highest intensity at 235 nm indicated the replacement of protons by the bound Zn2+. The Zn2+ binding with SRFA could be quantified by calculating the changes of the slopes of Zn-differential log-transformed absorbance in the wavelength range of 350–400 nm (denoted as DS350–400) and by comparing the experimental data with predictions using the Non-Ideal Competitive Adsorption (NICA–Donnan) model. DS350–400 was correlated well with the bound Zn2+ concentrations predicted by NICA–Donnan model with or without Ca2+ or Mg2+. Ca2+ and Mg2+ only affect intensity of the Zn-differential and Zn-differential log-transformed absorbance, not shape. In situ absorbance can be used to gain further information about Men+–DOM interactions in the presence of various metals.

  • Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area 2017-06-16


    Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3–6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children’s urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s  = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62–407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111–0.542; β Q3 = 0.347, 95% CI 0.103–0.531; β Q4 = 0.314, 95% CI 0.087–0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039–0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.