SEGH Events

The 33rd International conference of the Society for Environmental Geochemistry and Health (SEGH 2017)

30 June 2017
The annual SEGH conference provides an internationally leading platform for interaction between scientists, consultants, regulatory authorities and public servants engaged in the multidisciplinary areas of environment and health. The 33rd SEGH conference will be held by Guangdong University 30th June-July 4th 2017 in China.

SEGH 34th International Conference on Sustainable Geochemistry

02 July 2018
Victoria Falls, Zimbabwe
34th SEGH International Conference in Victoria Falls: Sustainable Geochemistry
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-02-22


    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.

  • Potential ecological risk assessment and predicting zinc accumulation in soils 2017-02-22


    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil–zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg−1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining–metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran’s correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg−1 d.m. (0.01 mol dm−3 CaCl2), and between 0.03 and 71.54 mg kg−1 d.m. (1 mol dm−3 NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.

  • Iodine deficiency status in the WHO Eastern Mediterranean Region: a systematic review 2017-02-21


    Iodine deficiency is a global public health issue because iodine plays a major role in the thyroid hormone synthesis and is essential for normal neurological development. This review summarizes the publications on iodine status in the WHO Eastern Mediterranean Region (EMR) countries. All related studies available in main national and international databases were systematically searched using some specific keywords to find article published between 1909 and 2015. The prevention of iodine deficiency disorders (IDDs) in the WHO EMR countries is currently under control without significant side effects. Mild to severe IDDs exist in some countries of the Middle East, due to lack of effective iodine supplementation program, but the Islamic Republic of Iran, Jordan, Bahrain and Tunisia have achieved the goal of universal salt iodization. Overall, despite enormous efforts to control IDDs, still IDD remains a serious public health problem in some countries of the region, requiring urgent control and prevention measures.